Drift theory и Drift theorem — различия между версиями
Строка 8: | Строка 8: | ||
{{Теорема | {{Теорема | ||
+ | |id=theorem1 | ||
|about=Multiplicative Drift Theorem | |about=Multiplicative Drift Theorem | ||
|statement= | |statement= | ||
Строка 79: | Строка 80: | ||
# Находим экстремумы функции <tex>f(\epsilon) = \epsilon + (1 - \delta)^{\epsilon}\delta^{-1}</tex> на интервале <tex>[0, 1)</tex> | # Находим экстремумы функции <tex>f(\epsilon) = \epsilon + (1 - \delta)^{\epsilon}\delta^{-1}</tex> на интервале <tex>[0, 1)</tex> | ||
− | Докажем второе утверждение теоремы. Пусть <tex>T_c = \lceil \delta^{-1} (\ln X_0 + c) \rceil</tex>. Тогда | + | 2. Докажем второе утверждение теоремы. Пусть <tex>T_c = \lceil \delta^{-1} (\ln X_0 + c) \rceil</tex>. Тогда |
<tex>\parbox{0px}{\begin{align*} | <tex>\parbox{0px}{\begin{align*} | ||
Строка 94: | Строка 95: | ||
# Упрощаем. | # Упрощаем. | ||
}} | }} | ||
+ | |||
+ | = Примеры использования = | ||
+ | Теорема о дрифте достаточно естественно применяется для эволюционных алгоритмов, оперирующих одной особью. Продемонстрируем это. | ||
+ | |||
+ | Пусть в эволюционном алгоритме протранство поиска <tex>S_n</tex>, а целевая функция – <tex>f: S_n \rightarrow \mathbb{N}</tex>. | ||
+ | Пусть оптимальное значение целевой функции – <tex>f_{opt}</tex> | ||
+ | Положим, что <tex>X_t = |f_{opt} - f(x_t)|</tex>, где <tex>x_t \in S_n</tex> – особь, полученная на шаге номер <tex>t</tex>. Почти все условия [[#theorem1| теоремы о дрифте]] выполнены, последнее условие (оценка на <tex>E(X_{i+1}|X_i)</tex>)доказывается для каждой задачи отдельно. | ||
+ | |||
+ | Продемострируем использование теоремы о дрифте для оценки времени нахождения оптимального решения задачи [[Теоретическая оценка времени работы алгоритмов RMHC и (1+1)-ES для задач OneMax и MST#OneMax|OneMax]] при использовании [[Теоретическая оценка времени работы алгоритмов RMHC и (1+1)-ES для задач OneMax и MST#RMHC_.28Random_Mutation_Hill_Climbing.29|RMHC]] и [[Теоретическая оценка времени работы алгоритмов RMHC и (1+1)-ES для задач OneMax и MST#ES_.28Evolution_Strategies.29|(1+1)-ES]] стратегий. Пространство поиска <tex>S_n</tex> – множество битовых строк длины <tex>n</tex>, целевая функция <tex>f(x_1, x_2, \dots , x_n) = OneMax(x_1, x_2, \dots , x_n) = x_1 + x_2, + \dots + x_n </tex>. | ||
+ | |||
+ | Ниже приведены примеры оценки ожидаемого значения следующего элемента в зависимости от предыдущего (<tex>E(X_{i+1}|X_i)</tex>). | ||
+ | |||
+ | == Применение к Random Mutation Hill Climbing == | ||
+ | Пусть <tex>X_i = k > 0</tex>. С вероятностью <tex>(n - k)/n</tex> будет перевернут единичный бит. Полученное решение будет хуже, чем предыдущее и будет отброшено. С вероятностью <tex>k/n</tex> будет перевернут нулевой бит. Это приведет к <tex>X_{i + 1} = k - 1</tex>. В итоге получаем: <tex>E(X_{i + 1} | X_i = k) = \frac{n - k}{n} k + \frac{k}{n} (k - 1) = (1 - \frac{1}{n})k</tex>. | ||
+ | |||
+ | Получаем, что <tex>\delta = \frac{1}{n}</tex>, следовательно <tex>E(T) \le n (\ln n + 1)</tex>. | ||
+ | |||
+ | == Применение к (1+1)-ES == | ||
+ | Пусть <tex>X_i = k > 0</tex>. Вероятность того, что в результате мутации будет переверут ровно один нулевой бит (и только он) составляет <tex>k(1/n)(1 - 1/n)^{(n-1)} \ge \frac{k}{n}e^{-1}</tex>. Во всех остальных случаях <tex>X_{i + 1} \le k</tex>. | ||
+ | |||
+ | Итог: <tex>E(X_{i + 1} | X_i = k) \le (1-\frac{k}{n}e^{-1}) k + \frac{k}{n}e^{-1} (k - 1) = (1 - \frac{1}{en})k</tex>. | ||
+ | |||
+ | Получаем, что <tex>\delta = \frac{1}{en}</tex>, следовательно <tex>E(T) \le en (\ln n + 1)</tex>. | ||
== Источники == | == Источники == |
Версия 23:37, 17 июня 2012
Теория дрифта была впервые представленная в работах [1,2]. Ее центральный результат, теорема о дрифте, успешно применяется для оценок времени работы различных эволюционных алгоритмов [3-7]. Тем не менее, многие исследователи критикуют ее использование. Основные причины --- сложность доказательства самой теоремы и ее использования.
В результате в работах [8,9] была предложена мультипликативная теорема о дрифте, которая во многих случаях позволяет получать более естественные доказательства. Кроме того в работе [10] была получена оценка вероятности того, что реальное время работы алгоритма превысит ожидаемое на заданную величину.
Содержание
Мультипликативная теорема о дрифте
Теорема (Multiplicative Drift Theorem): | |||||||||||||||
Пусть – последовательность случайных величин, и существует , такое что
Тогда для | |||||||||||||||
Доказательство: | |||||||||||||||
Подставляя выбранное утверждение(3) получаем: в
Пояснение:
2. Докажем второе утверждение теоремы. Пусть . Тогда
Пояснение:
| |||||||||||||||
Примеры использования
Теорема о дрифте достаточно естественно применяется для эволюционных алгоритмов, оперирующих одной особью. Продемонстрируем это.
Пусть в эволюционном алгоритме протранство поиска теоремы о дрифте выполнены, последнее условие (оценка на )доказывается для каждой задачи отдельно.
, а целевая функция – . Пусть оптимальное значение целевой функции – Положим, что , где – особь, полученная на шаге номер . Почти все условияПродемострируем использование теоремы о дрифте для оценки времени нахождения оптимального решения задачи OneMax при использовании RMHC и (1+1)-ES стратегий. Пространство поиска – множество битовых строк длины , целевая функция .
Ниже приведены примеры оценки ожидаемого значения следующего элемента в зависимости от предыдущего (
).Применение к Random Mutation Hill Climbing
Пусть
. С вероятностью будет перевернут единичный бит. Полученное решение будет хуже, чем предыдущее и будет отброшено. С вероятностью будет перевернут нулевой бит. Это приведет к . В итоге получаем: .Получаем, что
, следовательно .Применение к (1+1)-ES
Пусть
. Вероятность того, что в результате мутации будет переверут ровно один нулевой бит (и только он) составляет . Во всех остальных случаях .Итог:
.Получаем, что
, следовательно .Источники
- He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence 127, 57–85 (2001)
- He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3, 21–35 (2004)
- Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426. Springer, Heidelberg (2003)
- Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective optimization. In: Proceedings of GECCO 2006, pp. 651–658. ACM, New York (2006)
- Happ, E., Johannsen, D., Klein, C., Neumann, F.: Rigorous analyses of fitnessproportional selection for optimizing linear functions. In: Proceedings of GECCO 2008, pp. 953–960. ACM, New York (2008)
- Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 82–91. Springer, Heidelberg (2008)
- Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In: Proceedings of GECCO 2009, pp. 835–842. ACM, New York (2009)
- Doerr, B., Johannsen, D., Winzen, C.: Drift analysis and linear functions revisited. In: Proceedings of CEC 2010. IEEE, Los Alamitos (to appear, 2010)
- Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. In: Proceedings of GECCO 2010. ACM, New York (to appear, 2010)
- B. Doerr, L.A. Goldberg, Drift analysis with tail bounds, Proceedings of the 11th international conference on Parallel problem solving from nature: Part I, September 11-15, 2010, Kraków, Poland