Оценка сложности вычисления гиперобъема — различия между версиями
Строка 57: | Строка 57: | ||
== Примечания == | == Примечания == | ||
<references /> | <references /> | ||
+ | <ref> | ||
+ | Karl Bringmann, Tobias Friedrich, Approximating the volume of unions and intersections of high-dimensional geometric objects, ISAAC'2008, http://www.mpi-inf.mpg.de/~kbringma/paper/2008ISAAC_Volume.pdf | ||
+ | </ref> |
Версия 17:07, 19 июня 2012
Утверждается, что точное вычисление значения гиперобъема #P-трудной задачей, однако допускает эффективную аппроксимацию, а именно может быть аппроксимировано за
множества из точек -мерного пространства является- полином от количества параметров,
- полином от количества решений,
- полином от качества аппроксимации.
#P-трудность задачи вычисления гиперобъема
Определение: |
задача #MON-CNF (Satisfability problem for monotone boolean formulas) --- задача вычисления количества удовлетворяющих подстановок для монотонной булевой формулы, записанной в КНФ где все дизъюнкты |
Теорема: |
Задача вычисления гиперобъема принадлежит классу #P трудных задач |
Доказательство: |
Суть доказательства состоит в сведении задачи #MON-CNF к задаче вычисления значения гиперобъема. Так как доказано [1] , что #MON-CNF является #P-трудной, то это докажет теорему. Количество удовлетворяющих подстановок функции меньше на количество удовлетворяющих подстановок ее отрицания . Для упрощения вычислений далее будем работать с .Для каждого конъюнкта построим соответствующий ему гиперкубгде . Рассмотрим теперь . Заметим, что так как все вершины гиперкубов лежат в точках с целочисленными координатами 0,1 или 2, то и можно разбить на гиперкубы вида , где (то есть на гиперкубики со сторонами 1 с координатами ближайшей к началу координат вершины 0 или 1).Более того, из-за целочисленности вершин , каждый из этих гиперкубиков лежит в хотя бы одном из
А значит из определения
удовлетворяет для некоторого удовлетворяет Заметим, что так как Таким образом произвели сведение, в значит задача вычисления гиперобъема принадлежит #P удовлетворяет |
Примечания
- ↑ Karl Bringmann, Tobias Friedrich, Approximating the volume of unions and intersections of high-dimensional geometric objects, ISAAC'2008, http://www.mpi-inf.mpg.de/~kbringma/paper/2008ISAAC_Volume.pdf
- ↑ Karl Bringmann, Tobias Friedrich, Approximating the volume of unions and intersections of high-dimensional geometric objects, ISAAC'2008, http://www.mpi-inf.mpg.de/~kbringma/paper/2008ISAAC_Volume.pdf