Задача многокритериальной оптимизации. Multiobjectivization — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Задачи)
(Источники)
Строка 91: Строка 91:
 
* [http://ru.wikipedia.org/wiki/Многокритериальная_оптимизация Википедия: Многокритериальная оптимизация]
 
* [http://ru.wikipedia.org/wiki/Многокритериальная_оптимизация Википедия: Многокритериальная оптимизация]
 
* [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/3/multiobjectivization.pdf Knowles J., Watson R., Corne D. Reducing Local Optima in Single-Objective Problems by Multi-objectivization]
 
* [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/3/multiobjectivization.pdf Knowles J., Watson R., Corne D. Reducing Local Optima in Single-Objective Problems by Multi-objectivization]
* [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/3/p1213.pdf Friedrich T., Neumann F. Foundations of Evolutionary Multi-Objective Optimization]
+
* [http://en.wikipedia.org/wiki/Multiobjective_optimization Wikipedia: Multiobjective optimization]
 +
* [http://en.wikipedia.org/wiki/Hill_climbing Wikipedia: Hill climbing]
 +
* Гладков Л.А., Курейчик В.В., Курейчик В.М. "Генетические алгоритмы. Учебное пособие"

Версия 13:29, 20 июня 2012

Задача многокритериальной оптимизации

Постановка задачи

Определение:
Задача многокритериальной оптимизации:
[math]maximize \{f(x) = (f_1(x),\dots,f_K(x))\}[/math]
[math] x \in X[/math]
где [math] f(x) : X \rightarrow R^K[/math] – целевая вектор-функция, где [math]K \ge 2[/math]

Так как не существует единого решение, которое было бы максимальным для всех целевых функций, вместо него можно искать множество [math]X^* \subseteq X [/math] множество Парето оптимальных значений.

Множество Парето оптимальных значений

Определение:
Множество Парето оптимальных значений:
[math]\forall x^* \in X^* \not\exists x \in X [/math]:[math]x \succ x^*[/math], где [math]x \succ x^* \Leftrightarrow (\forall i \in 1..K, (f_i(x) \ge f_i(x^*))\land (\exists i \in 1..K, f_i(x) \gt f_i(x^*)))[/math]

Выражение [math]x \succ x^*[/math] означает, что [math]x[/math] доминирует над [math]x^*[/math].

Говорят, что [math]x[/math] доминирует над [math]x^*[/math]. по Парето, если [math]x[/math] не хуже [math]x^*[/math] по всем критериям и хотя бы по одному критерию превосходит [math]x^*[/math]. В таком случае в выборе [math]x^*[/math] нет смысла, т.к. [math]x[/math] по всем параметрам не уступает, а по каким-то и превосхожит [math]x^*[/math]. Если рассматривать всего два критерия то на рис. 1 показана область пространства, доминируемая данным решением А. Эта область «замкнута»: элементы на ее границе также доминируемы А

Рис.1 – Доминируемые решения


Определение:
Для двух решений [math]x[/math] и [math]x'[/math] говорят [math]x \sim x'[/math] тогда и только тогда, когда [math]\exists i \in 1..K \colon f_i(x) \gt f_i(x') \land \exists j \in 1..K, j \ne i \colon f_j(x') \gt f_j(x)[/math] – такую пару решений называют недоминируемой

На рис. 2 показана граница Парето для возможных решений в двухкритериальном пространстве

Рис.2 – Парето фронт

Множество Парето оптимальных недоминируемых решений называется Парето фронтом.

Multi-objectivization

Суть метода мульти-объективизации заключается в разбитии сложной задачи с одной целевой функцией на несколько подзадач, найти для каждой подзадачи решение и выбрать оптимальное решение.

Для выполнения оптимизации многокритериальной задачи мы должны добавить в целевую функцию новые параметры, либо должны добавить новые целевые функции.

Сложность этой процедуры заключается в разложении проблемы на ряд мелких независимых между собой подпроблем.

Алгоритмы

Hill-Climbers

Определение:
Hill-Climbers – Итеративный алгоритм, который начинается с произвольного решения проблемы, а затем пытается найти лучшее решение, постепенно изменяя его. Если изменения позволяют найти лучшее решение, алгоритм сохраняет его и повторяет и повторяет своё выполнение до тех пор, пока лучшие решения не могут быть найдены


Initialization: [math]P \leftarrow \emptyset [/math]
Init_pop[math](P)[/math]
Main Loop: [math]x_1 \leftarrow [/math]Rand_mem[math](P)[/math],[math]x'_2 \leftarrow [/math]Rand_mem[math](P)[/math]

[math]x'_1 \leftarrow [/math]Mutate[math](P)[/math],[math]x_2 \leftarrow [/math]Mutate[math](P)[/math]
if[math](H(x_1,x'_1)+H(x_2,x'_2) \gt H(x_1,x'_2)+H(x_2,x'_1))[/math]

Swap[math](x_1,x'_2)[/math]

if [math]f(x'_1) \gt f(x_1)[/math]

[math]P \leftarrow P \cup x'_1 \setminus x_1[/math]

if [math]f(x'_2) \gt f(x_2)[/math]

[math]P \leftarrow P \cup x'_2 \setminus x_2[/math]
Termination: return Best[math](P)[/math]

Задачи

Задача коммивояжера (TSP)является наиболее известно из всего класса [math]NP[/math]-сложных задач. Формулируется задача следующим образом:

Задано [math]C=\{c_1,c_2,\dots,c_N\} [/math] – множество городов и для каждой пары [math]\{c_i,c_j\}[/math] задано расстояние. Наша цель – найти цепь из городов, минимизирующую величину:

[math]\sum^{N-1}_{i=1} d(C_{\pi(i)},C_{\pi(i+1)})+d(C_{\pi(N)},C_{\pi(1)})[/math]

Для того, чтобы объектизировать эту задачу, нам необходимо определить подзадачи. TSP – является [math]NP[/math]-сложной именно потому, что нет хорошего разложения этой задачи.

Приведем алгоритм для задачи коммивояжера на основе "жадной" стратегии:

  1. Для каждой пары хромосом случайным образом выберем точку разрыва и в качестве номера стартовой вершины возьмем номер отмеченного гена в хромосоме.
  2. Сравним частичную стоимость путей, ведущих из текущих вершин в хромосомах родителях, и выберем из них кратчайший.
  3. Если выбранная таким образом вершина графа уже была включена в частичный путь, то взять случайную вершину из числа не просмотренных. Присвоить полученной вершине значение текущей.
  4. При преждевременном образовании циклов выбирается другой кратчайший путь.
  5. Повторяем пункты 2 и 3 пока не будет просмотрен гамильтонов цикл с квазиминимальной суммарной стоимостью рёбер.
  6. Конец работы алгоритма

Для того, чтобы избежать проблемы локального минимума, в алгоритм вводится модификация:

  1. Предпочтение более невыгодного маршрута с точки зрения заданной целевой функции более выгодному отдается с определенной вероятностью.
  2. выбирается около половины генетического материала от каждого из родителей

Источники