Задача многокритериальной оптимизации. Multiobjectivization — различия между версиями
(→Hierarchical-if-and-only-if function) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
== Введение == | == Введение == | ||
В данной статье рассматривается многокритериальная оптимизация, её задача. Рассматривается понятие Парето-фронт - множество Парето оптимальных значений. Также рассматривается задача коммивояжера и предлагается алгоритм её мультиобъективизации | В данной статье рассматривается многокритериальная оптимизация, её задача. Рассматривается понятие Парето-фронт - множество Парето оптимальных значений. Также рассматривается задача коммивояжера и предлагается алгоритм её мультиобъективизации |
Версия 09:01, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Введение
В данной статье рассматривается многокритериальная оптимизация, её задача. Рассматривается понятие Парето-фронт - множество Парето оптимальных значений. Также рассматривается задача коммивояжера и предлагается алгоритм её мультиобъективизации
Задача многокритериальной оптимизации
Постановка задачи
Определение: |
Задача многокритериальной оптимизации:
|
Так как не существует единого решение, которое было бы максимальным для всех целевых функций, вместо него можно искать множество
множество Парето оптимальных значений.Множество Парето оптимальных значений
Определение: |
Множество Парето оптимальных значений:
|
Выражение
означает, что доминирует над .Говорят, что
доминирует над . по Парето, если не хуже по всем критериям и хотя бы по одному критерию превосходит . В таком случае в выборе нет смысла, т.к. по всем параметрам не уступает, а по каким-то и превосхожит . Если рассматривать всего два критерия то на рис. 1 показана область пространства, доминируемая данным решением А. Эта область «замкнута»: элементы на ее границе также доминируемы А
Определение: |
Для двух решений | и говорят тогда и только тогда, когда – такую пару решений называют недоминируемой
На рис. 2 показана граница Парето для возможных решений в двухкритериальном пространстве
Множество Парето оптимальных недоминируемых решений называется Парето фронтом.
Multi-objectivization
Суть метода мульти-объективизации заключается в разбитии сложной задачи с одной целевой функцией на несколько подзадач, найти для каждой подзадачи решение и выбрать оптимальное решение.
Для выполнения оптимизации многокритериальной задачи мы должны добавить в целевую функцию новые параметры, либо должны добавить новые целевые функции.
Сложность этой процедуры заключается в разложении проблемы на ряд мелких независимых между собой подпроблем.
Алгоритмы
Hill-Climbers
Определение: |
Hill-Climbers – Итеративный алгоритм, который начинается с произвольного решения проблемы, а затем пытается найти лучшее решение, постепенно изменяя его. Если изменения позволяют найти лучшее решение, алгоритм сохраняет его и повторяет и повторяет своё выполнение до тех пор, пока лучшие решения не могут быть найдены |
Initialization: | Init_pop |
Main Loop: |
if if | Rand_mem , Rand_mem
Termination: | return Best |
Задачи
Hierarchical-if-and-only-if function
H-IIF – предназначена для моделирования проблемы с блочной структурой, каждый блок которой строго связан с остальными блоками.
- ,
где
– блок бит – размер блока, а – левая и правая часть блока соответственно.Применяя к этой задаче мультиобъективизацию, разобьём задачу
на -задач.Представим, как будет выглядеть
:где
– первая цель; – вторая цель.Данный подход помогает избежать проблему локальных максимумов (минимумов).
Задача коммивояжера
Задача коммивояжера (TSP)является наиболее известно из всего класса
-сложных задач. Формулируется задача следующим образом:Задано
– множество городов и для каждой пары задано расстояние. Наша цель – найти цепь из городов, минимизирующую величину:Применяя к этой задаче мультиобъктивизацию, нужно разбить её на подзадачи. TSP – является
-сложной именно потому, что нет хорошего разложения этой задачи. Тем не менее задачу можно разбить на две или больше подтуров, каждый из которых мы можем минимизировать.Представим подтуры в виде двух городов. Тогда наша задача примет вид:
- where
- and ,
где
и – два города, указанных априори. Если , меняем их местами.Предполагается, что
и выбраны произвольно.