Теорема о непринадлежности XOR классу AC⁰ — различия между версиями
Rost (обсуждение | вклад) (→Теорема) |
Rost (обсуждение | вклад) м |
||
Строка 15: | Строка 15: | ||
|proof= | |proof= | ||
===Основная идея=== | ===Основная идея=== | ||
− | Допустим, что схема из [[Классы NC и AC| класса]] <tex>\mathrm{AC^0}</tex> распознает язык <tex>\oplus</tex>. Оказывается с высокой вероятностью схему из класса <tex>\mathrm{AC^0}</tex> можно представить в виде <tex>k</tex>-КНФ или <tex>k</tex>-ДНФ, причем <tex>k</tex> не зависит от числа входов схемы. Для этого строится итеративный процесс, на каждом шаге которого некоторые случайно выбранные входные значения заменяются на случайные значения. Поскольку степень входа не ограничена, то рассмотрим содержательный случай, когда <tex>k</tex> меньше числа входов схемы. Если с вероятностью <tex>\frac{1}{2}</tex> входу полученной схемы назначается значение, то с вероятностью не менее <tex>\frac{1}{2^k}</tex> значение схемы будет постоянным. Поскольку эта вероятность больше нуля, то для произвольной схемы из класса <tex>\mathrm{AC^0}</tex> можно подобрать значения части входов так, чтобы значение функции было постоянным и не зависит от остальных входных значений, поэтому ни одна схема из этого класса не может распознавать язык <tex>\oplus</tex>. | + | Допустим, что схема из [[Классы NC и AC| класса]] <tex>\mathrm{AC^0}</tex> распознает язык <tex>\oplus</tex>. Оказывается, что с высокой вероятностью схему из класса <tex>\mathrm{AC^0}</tex> можно представить в виде <tex>k</tex>-КНФ или <tex>k</tex>-ДНФ, причем <tex>k</tex> не зависит от числа входов схемы. Для этого строится итеративный процесс, на каждом шаге которого некоторые случайно выбранные входные значения заменяются на случайные значения. Поскольку степень входа не ограничена, то рассмотрим содержательный случай, когда <tex>k</tex> меньше числа входов схемы. Если с вероятностью <tex>\frac{1}{2}</tex> входу полученной схемы назначается значение, то с вероятностью не менее <tex>\frac{1}{2^k}</tex> значение схемы будет постоянным. Поскольку эта вероятность больше нуля, то для произвольной схемы из класса <tex>\mathrm{AC^0}</tex> можно подобрать значения части входов так, чтобы значение функции было постоянным и не зависит от остальных входных значений, поэтому ни одна схема из этого класса не может распознавать язык <tex>\oplus</tex>. |
===Технические подробности=== | ===Технические подробности=== |
Версия 14:03, 27 июня 2012
Определение: |
язык над алфавитом , состоящий из слов, содержащих нечетное число |
Предположим, что ДНФ распознает язык . Каждый конъюнкт зависит от всех входных значений. В противном случае допустим, что некоторый конъюнкт не зависит от значения . Тогда можно подобрать такие входные значения, при которых значение этого конъюнкта (а значит и ) будет равно и не зависить от значения . Однако при различных значениях значение должно изменяться, так как распознает . Значит, предположение неверно, поэтому каждый конъюнкт зависит от всех входных значений. Предположим, что состоит из конъюнктов , ..., . Тогда для случайного входа верно, что . Поскольку , то . Аналогичный результат можно получить и для КНФ.
Отсюда и возникает вопрос: можно ли распознавать
схемой полиномиального размера и постоянной глубиной?Содержание
Теорема
Теорема: | ||
. | ||
Доказательство: | ||
Основная идеяДопустим, что схема из класса распознает язык . Оказывается, что с высокой вероятностью схему из класса можно представить в виде -КНФ или -ДНФ, причем не зависит от числа входов схемы. Для этого строится итеративный процесс, на каждом шаге которого некоторые случайно выбранные входные значения заменяются на случайные значения. Поскольку степень входа не ограничена, то рассмотрим содержательный случай, когда меньше числа входов схемы. Если с вероятностью входу полученной схемы назначается значение, то с вероятностью не менее значение схемы будет постоянным. Поскольку эта вероятность больше нуля, то для произвольной схемы из класса можно подобрать значения части входов так, чтобы значение функции было постоянным и не зависит от остальных входных значений, поэтому ни одна схема из этого класса не может распознавать язык . Технические подробностиПокажем, как представить схему из класса в виде -КНФ или -ДНФ. Не умаляя общности, будем считать, что:
Построим итеративный процесс, на каждом шаге которого можно с высокой вероятностью уменьшить глубину схемы на . Пусть глубина схемы, а число входов схемы. Выберем минимальное целое так, чтобы было не меньше, чем число элементов в схеме. Обозначим число входов схемы после -го шага. ВозьмемHastad’s switching lemma
Замечание. Для функции можно получить такой же результат, изменив КНФ на ДНФ и наоборот.Докажем по индукции, что после -ого шага с достаточно большой вероятностью глубина схемы будет , причем наибольшая степень входа элемента на нижнем уровне не будет превосходить .
| ||
Источники
- Sanjeev Arora, Boaz Barak. Computational Complexity: A Modern Approach