Коды антигрея — различия между версиями
Никита (обсуждение | вклад) (→Определение) |
Martoon (обсуждение | вклад) (Добавлено доказательство для двоичных кодов) |
||
Строка 58: | Строка 58: | ||
=== Доказательство корректности алгоритма === | === Доказательство корректности алгоритма === | ||
+ | Обозначим за <tex>G_i</tex> — <tex>i</tex>-ый вектор в зеркальном коде Грея, <tex>\bar G_i</tex> — его инверсию. | ||
+ | Тогда вектора будут располагаться в таком порядке: | ||
+ | ... | ||
+ | <tex>G_i</tex> | ||
+ | <tex>\bar G_i</tex> | ||
+ | <tex>G_{i+1}</tex> | ||
+ | <tex>\bar G_{i+1}</tex> | ||
+ | <tex>G_{i+2}</tex> | ||
+ | ... | ||
+ | * <tex>G_i</tex> и <tex>\bar G_i</tex> отличаются во всех битах. | ||
+ | * Если <tex>G_i</tex> и <tex>G_{i+1}</tex> отличаются в <tex>k</tex>-ом бите, то инверсия <tex>G_i</tex> совпадает с <tex>G_{i+1}</tex> только в <tex>k</tex>-ом бите. То есть <tex>\bar G_i</tex> и <tex>G_{i+1}</tex> отличаются во всех позициях, кроме <tex>k</tex>-ой. | ||
+ | |||
+ | |||
== Троичный код антигрея == | == Троичный код антигрея == | ||
{{Определение | {{Определение |
Версия 18:09, 12 января 2013
Содержание
Определение
Определение: |
Код антигрея (Anti-Gray Code) — такое упорядочивание расстояние Хэмминга между двумя соседними векторами максимально. | -ичных векторов, что
Код антигрея может использоваться для обнаружения неисправностей в устройстве при переходе в соседнее состояние. Часто используется в приборах, устанавливающихся на улице. Такое кодирование позволяет вовремя выявить поломку или какое-то загрязнение и своевременно устранить неисправность.
Двоичный код антигрея
Определение: |
Двоичный код антигрея — такое упорядочивание двоичных векторов длины | , что соседние отличаются не менее, чем в битах.
Заметим, что для невозможно такое упорядочивание двоичных векторов, что соседние отличаются во всех битах. Объясняется это тем, что для двоичного вектора существует ровно один вектор, отличающийся во всех битах. А в последовательности их должно быть 2.
Пример
n = 1 | n = 2 | n = 3 |
---|---|---|
0 | 00 | 000 |
1 | 11 | 111 |
01 | 001 | |
10 | 110 | |
011 | ||
100 | ||
010 | ||
101 |
Алгоритм генерации
Возьмем двоичный зеркальный код Грея размером . Тогда для первых двоичных векторов будем:
- Печатать двоичный вектор
- Печатать его инверсию
Утверждается, что с помощью данного алгоритма мы напечатаем двоичный код антигрея.
Псевдокод
genBinAntiGray(n) for i = 1 to 2^(n-1) v = getMirrorGray(i, n) print(v) inverseBits(v) print(v)
Доказательство корректности алгоритма
Обозначим за
— -ый вектор в зеркальном коде Грея, — его инверсию. Тогда вектора будут располагаться в таком порядке:......
- и отличаются во всех битах.
- Если и отличаются в -ом бите, то инверсия совпадает с только в -ом бите. То есть и отличаются во всех позициях, кроме -ой.
Троичный код антигрея
Определение: |
Троичный код антигрея — такое упорядочивание троичных вектором, что соседние отличаются во всех разрядах. |
В отличие от двоичного кода антигрея, здесь мы не сталкиваемся с проблемой однозначности "соседа" и можем привести такой код, соседние элементы которого будут отличаться во всех разрядах.
Пример
n = 1 | n = 2 | n = 3 | ||
---|---|---|---|---|
0 | 00 | 000 | 010 | 020 |
1 | 11 | 111 | 121 | 101 |
2 | 22 | 222 | 202 | 212 |
01 | 001 | 011 | 021 | |
12 | 112 | 122 | 102 | |
20 | 220 | 200 | 210 | |
02 | 002 | 012 | 022 | |
10 | 110 | 120 | 100 | |
21 | 221 | 201 | 211 |
Алгоритм генерации
Упорядочим все троичные вектора лексикографически. Тогда для первых
векторов будем выводить все его поразрядные циклические сдвиги.Утверждается, что выполняя эти действия мы получим троичный код антигрея.
Псевдокод
genTernAntiGray(n) for v = <000..0> to <022..2> digitCircleShift(v) while(v[0] != 0) print(v) digitCircleShift(v)
Заметим, что данный алгоритм можно обобщить на случай
-ичного кода антигрея.