Теорема Банаха-Штейнгауза — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 16: Строка 16:
 
Банах, Штейнгауз
 
Банах, Штейнгауз
 
|about=
 
|about=
Принцип равномерной ограниченности
+
принцип равномерной ограниченности
 
|statement=
 
|statement=
 
Пусть <tex>X</tex> {{---}} банахово, <tex>A_n \in L(X, Y)</tex>, <tex>A_n</tex> поточечно ограничена. Тогда <tex>A_n</tex> равномерно ограничена.
 
Пусть <tex>X</tex> {{---}} банахово, <tex>A_n \in L(X, Y)</tex>, <tex>A_n</tex> поточечно ограничена. Тогда <tex>A_n</tex> равномерно ограничена.
Строка 26: Строка 26:
 
<tex>\exists n_2: \|A_{n_2} x_2\| \ge 2</tex>; <tex>A_{n_2}</tex> непрерывен, берем <tex>V_r(x) = \overline {V_2} \subset \overline {V_1}</tex>, где <tex>r = \frac {r(\overline V_1)}{2}</tex>.
 
<tex>\exists n_2: \|A_{n_2} x_2\| \ge 2</tex>; <tex>A_{n_2}</tex> непрерывен, берем <tex>V_r(x) = \overline {V_2} \subset \overline {V_1}</tex>, где <tex>r = \frac {r(\overline V_1)}{2}</tex>.
  
Продолжая таким образом, выстраиваем последовательность вложенных шаров <tex>\overline {V_{n_m}}: \overline {V_{n_{m+1}}} \subset \overline {V_{n_m}}, r_{n_m} \to 0, \forall x \in \overline {V_{n_m}}: \|A_{n_m} x \| > m</tex>.
+
Продолжая таким образом, выстраиваем последовательность вложенных шаров <tex>\overline V_{n_m}: \overline V_{n_{m+1}} \subset \overline V_{n_m}, r_{n_m} \to 0, \forall x \in \overline V_{n_m}: \|A_{n_m} x \| > m</tex>.
  
Так как <tex>Y</tex> - банахово, то существует <tex>c \in \bigcap\limits_{m=1}^{\infty} \overline {V_{n_m}}</tex>, <tex>\sup\limits_{m} \|A_{n_m}(c)\| < +\infty</tex>.
+
Так как <tex>Y</tex> - банахово, то существует <tex>c \in \bigcap\limits_{m=1}^{\infty} \overline V_{n_m}</tex>, <tex>\sup\limits_{m} \|A_{n_m}(c)\| < +\infty</tex>.
  
 
Но <tex>\forall m: \|A_{n_m}(c)\| > m\|</tex>, то есть, <tex>\sup\limits_{m} \|A_{n_m}(c)\| = +\infty</tex>. Получили противоречие, значит, <tex>A_n</tex> равномерно ограничена.
 
Но <tex>\forall m: \|A_{n_m}(c)\| > m\|</tex>, то есть, <tex>\sup\limits_{m} \|A_{n_m}(c)\| = +\infty</tex>. Получили противоречие, значит, <tex>A_n</tex> равномерно ограничена.

Версия 01:57, 4 января 2013

Эта статья находится в разработке!

Будем рассматривать последовательность операторов [math]A_n: X \rightarrow Y[/math].

Определение:
Последовательность [math]A_n[/math] поточечно ограничена, если [math]\forall x \in X \sup\limits_{n \in \mathbb N} \|A_n x\| \le +\infty[/math].


Определение:
Последовательность [math]A_n[/math] равномерно ограничена, если [math]\sup\limits_{n \in \mathbb N} \|A_n\| \le +\infty[/math].


Теорема (Банах, Штейнгауз, принцип равномерной ограниченности):
Пусть [math]X[/math] — банахово, [math]A_n \in L(X, Y)[/math], [math]A_n[/math] поточечно ограничена. Тогда [math]A_n[/math] равномерно ограничена.
Доказательство:
[math]\triangleright[/math]

Пусть существует некоторый замкнутый шар [math]\overline V[/math], такой, что [math]\sup\limits_{n} \sup\limits_{x \in \overline V}\|A_n x\| = +\infty[/math].

Тогда [math]\exists n_1: \|A_{n_1} x_1\| \ge 1[/math]; [math]A_{n_1}[/math] непрерывен, значит, можно взять [math]V_r(x) = \overline {V_1} \subset \overline V[/math], где [math]r = \frac {r(\overline V)}{2}[/math].

[math]\exists n_2: \|A_{n_2} x_2\| \ge 2[/math]; [math]A_{n_2}[/math] непрерывен, берем [math]V_r(x) = \overline {V_2} \subset \overline {V_1}[/math], где [math]r = \frac {r(\overline V_1)}{2}[/math].

Продолжая таким образом, выстраиваем последовательность вложенных шаров [math]\overline V_{n_m}: \overline V_{n_{m+1}} \subset \overline V_{n_m}, r_{n_m} \to 0, \forall x \in \overline V_{n_m}: \|A_{n_m} x \| \gt m[/math].

Так как [math]Y[/math] - банахово, то существует [math]c \in \bigcap\limits_{m=1}^{\infty} \overline V_{n_m}[/math], [math]\sup\limits_{m} \|A_{n_m}(c)\| \lt +\infty[/math].

Но [math]\forall m: \|A_{n_m}(c)\| \gt m\|[/math], то есть, [math]\sup\limits_{m} \|A_{n_m}(c)\| = +\infty[/math]. Получили противоречие, значит, [math]A_n[/math] равномерно ограничена.
[math]\triangleleft[/math]