Теорема Банаха-Штейнгауза — различия между версиями
Sementry (обсуждение | вклад) |
Sementry (обсуждение | вклад) м |
||
Строка 16: | Строка 16: | ||
Банах, Штейнгауз | Банах, Штейнгауз | ||
|about= | |about= | ||
− | + | принцип равномерной ограниченности | |
|statement= | |statement= | ||
Пусть <tex>X</tex> {{---}} банахово, <tex>A_n \in L(X, Y)</tex>, <tex>A_n</tex> поточечно ограничена. Тогда <tex>A_n</tex> равномерно ограничена. | Пусть <tex>X</tex> {{---}} банахово, <tex>A_n \in L(X, Y)</tex>, <tex>A_n</tex> поточечно ограничена. Тогда <tex>A_n</tex> равномерно ограничена. | ||
Строка 26: | Строка 26: | ||
<tex>\exists n_2: \|A_{n_2} x_2\| \ge 2</tex>; <tex>A_{n_2}</tex> непрерывен, берем <tex>V_r(x) = \overline {V_2} \subset \overline {V_1}</tex>, где <tex>r = \frac {r(\overline V_1)}{2}</tex>. | <tex>\exists n_2: \|A_{n_2} x_2\| \ge 2</tex>; <tex>A_{n_2}</tex> непрерывен, берем <tex>V_r(x) = \overline {V_2} \subset \overline {V_1}</tex>, где <tex>r = \frac {r(\overline V_1)}{2}</tex>. | ||
− | Продолжая таким образом, выстраиваем последовательность вложенных шаров <tex>\overline | + | Продолжая таким образом, выстраиваем последовательность вложенных шаров <tex>\overline V_{n_m}: \overline V_{n_{m+1}} \subset \overline V_{n_m}, r_{n_m} \to 0, \forall x \in \overline V_{n_m}: \|A_{n_m} x \| > m</tex>. |
− | Так как <tex>Y</tex> - банахово, то существует <tex>c \in \bigcap\limits_{m=1}^{\infty} \overline | + | Так как <tex>Y</tex> - банахово, то существует <tex>c \in \bigcap\limits_{m=1}^{\infty} \overline V_{n_m}</tex>, <tex>\sup\limits_{m} \|A_{n_m}(c)\| < +\infty</tex>. |
Но <tex>\forall m: \|A_{n_m}(c)\| > m\|</tex>, то есть, <tex>\sup\limits_{m} \|A_{n_m}(c)\| = +\infty</tex>. Получили противоречие, значит, <tex>A_n</tex> равномерно ограничена. | Но <tex>\forall m: \|A_{n_m}(c)\| > m\|</tex>, то есть, <tex>\sup\limits_{m} \|A_{n_m}(c)\| = +\infty</tex>. Получили противоречие, значит, <tex>A_n</tex> равномерно ограничена. |
Версия 01:57, 4 января 2013
Эта статья находится в разработке!
Будем рассматривать последовательность операторов
.Определение: |
Последовательность | поточечно ограничена, если .
Определение: |
Последовательность | равномерно ограничена, если .
Теорема (Банах, Штейнгауз, принцип равномерной ограниченности): |
Пусть — банахово, , поточечно ограничена. Тогда равномерно ограничена. |
Доказательство: |
Пусть существует некоторый замкнутый шар , такой, что .Тогда ; непрерывен, значит, можно взять , где .; непрерывен, берем , где . Продолжая таким образом, выстраиваем последовательность вложенных шаров .Так как Но - банахово, то существует , . , то есть, . Получили противоречие, значит, равномерно ограничена. |