Теорема Банаха об обратном операторе — различия между версиями
(ААААА) |
(все, вроде лемма очищена от бреда) |
||
Строка 81: | Строка 81: | ||
Тогда хотя бы одно <tex> X_n </tex> ''всюду плотно в <tex> X </tex>''. | Тогда хотя бы одно <tex> X_n </tex> ''всюду плотно в <tex> X </tex>''. | ||
|proof= | |proof= | ||
− | Очевидно, что <tex> X = \bigcup\limits_{n=1}^{\infty} X_n </tex>, <tex> X </tex> {{---}} B-пространство (а значит, и полное метрическое), значит, по [[теореме Бэра о категориях]], <tex> X </tex> {{---}} 2 категории, то есть какое-то множество <tex>X_{n_0}</tex> | + | Очевидно, что <tex> X = \bigcup\limits_{n=1}^{\infty} X_n </tex>, <tex> X </tex> {{---}} B-пространство (а значит, и полное метрическое), значит, по [[Метрические пространства#thbaire|теореме Бэра о категориях]], <tex> X </tex> {{---}} 2 категории, то есть какое-то множество <tex>X_{n_0}</tex> не является ''[[Метрические пространства#defdense|нигде не плотным]]''. |
+ | |||
+ | Вспомним определение нигде не плотности: <tex>A</tex> нигде не плотно, если <tex>\forall V \exists U \subset V: A \cap U = \emptyset</tex>. Раз <tex>X_{n_0}</tex> '''не''' является нигде не плотным, то <tex>\exists V \forall U \subset V: X_{n_0} \cap U \ne \emptyset</tex>, то есть <tex>X_{n_0}</tex> в каком-то открытом шаре. Теперь возьмем замкнутый шар <tex>\overline V_r(a)</tex>, лежащий в этом открытом шаре, причем такой, что <tex>a \in X_{n_0}</tex>. | ||
Рассмотрим кольцо: <tex> \{z \mid \frac r2 \le \| z - a \| \le r \} </tex>. Обозначим <tex> y = z - a </tex>, тогда кольцо имеет следующий вид: <tex> \{\frac r2 \le \| y \| \le r \} </tex> {{---}} кольцо с центром в <tex> 0 </tex>. | Рассмотрим кольцо: <tex> \{z \mid \frac r2 \le \| z - a \| \le r \} </tex>. Обозначим <tex> y = z - a </tex>, тогда кольцо имеет следующий вид: <tex> \{\frac r2 \le \| y \| \le r \} </tex> {{---}} кольцо с центром в <tex> 0 </tex>. | ||
− | + | Заметим, что при параллельном переносе на <tex>a</tex> свойство всюду плотности множества <tex> X_{n_0} </tex> сохраняется. | |
− | |||
− | Будем рассматривать <tex> z \in X_{n_0} \cap \{\frac r2 \le \| z - a \| \le r \} </tex>. | + | Будем рассматривать <tex> z \in X_{n_0} \cap \{\frac r2 \le \| z - a \| \le r \}, y = z - a</tex>. Проверим, что <tex>y</tex> войдет в какое-нибудь <tex>X_n</tex>: |
− | <tex> | + | <tex> \| Ay \| = \frac {\| A(z - a) \|}{\| y \|} \| y \| \le \frac 2r (\| Az \| + \| Aa \|) \| y \| </tex>, так как <tex> \| y \| \ge \frac r2 </tex>. |
Поскольку <tex> z \in X_{n_0} </tex>, то <tex> \| Az \| \le n_0 \| z \| </tex>. | Поскольку <tex> z \in X_{n_0} </tex>, то <tex> \| Az \| \le n_0 \| z \| </tex>. | ||
Строка 101: | Строка 102: | ||
Итак, получили, что <tex> X_m </tex> всюду плотно в кольце с центром в <tex> 0 </tex>. Возьмем теперь любой <tex> x \in X </tex>, его можно представить как <tex> x = tz, z \in \{\frac r2 \le \| z \| \le r \} </tex>. | Итак, получили, что <tex> X_m </tex> всюду плотно в кольце с центром в <tex> 0 </tex>. Возьмем теперь любой <tex> x \in X </tex>, его можно представить как <tex> x = tz, z \in \{\frac r2 \le \| z \| \le r \} </tex>. | ||
− | По | + | По всюду плотности в кольце, найдется последовательность <tex>y_p</tex> в <tex>X_m \cap \{\frac r2 \le \| z \| \le r \}</tex> такая, что <tex>y_p \to z </tex>. Но <tex> ty_p \to tz = x </tex>. |
<tex> \| A(ty_p) \| \le m \| t y_p \| \implies ty_p \in X_m </tex>. | <tex> \| A(ty_p) \| \le m \| t y_p \| \implies ty_p \in X_m </tex>. | ||
− | Взяв любую точку из <tex> X </tex>, мы можем приблизить ее элементами <tex> | + | Взяв любую точку из <tex> X </tex>, мы можем приблизить ее элементами <tex> t y_p \in X_m </tex>, а значит, <tex>\mathrm{Cl} \ X_m = X </tex>, то есть <tex>X_m</tex> всюду плотно в <tex> X </tex>. |
}} | }} | ||
Версия 19:57, 9 января 2013
Определение: |
Оператор TODO: от обратного оператора требуется, чтобы он был определен на всем кодомене, или только на образе? | называется непрерывно обратимым, если существует и .
Теорема (Банах, о непрерывной обратимости I-C): |
Пусть — B-пространство, оператор и .
Тогда оператор , где — тождественный оператор, непрерывно обратим. |
Доказательство: |
— B-пространство. Рассмотрим следующие суммы: .. — ряд в B-пространстве сходится, если сходится ряд из соответствующих норм. Из того, что , получаем . Так как , то существует такой , что .. Поскольку , то , а значит, и . . Устремляя к бесконечности, получаем , а значит — ограниченный оператор. |
Трактовка этой теоремы:
, — непрерывно обратимый оператор. При каких условиях на оператор оператор сохраняет ннепрерывную обратимость? Из теоремы выше известен ответ на этот вопрос: когда , то есть "при малых возмущениях сохраняется его непрерывная обратимость".Далее считаем, что пространства
и — всегда банаховы.
Определение: |
Рассмотрим уравнение TODO: Это для всех y сразу, или для каждого y своя константа? | при заданном . Если для такого уравнения можно написать , где — константа, то говорят, что это уравнение допускает априорную оценку решений.
— область значений оператора , является линейным множеством, но может быть незамкнутым. Однако, верно следующее:
Утверждение: |
Если непрерывен, и уравнение допускает априорную оценку решений, то . |
Возьмем сходящуюся последовательсть . Нужно проверить, правда ли , или, что то же самое, что уравнение имеет решение для такого .. Можно выбрать такую подпоследовательность , что для этой подпоследовательности после перенумерации будет выполняться . По линейности : и для любого существует .Поскольку уравнение допускает априорную оценку решений, имеем .Рассмотрим следующий ряд: . Сумма ряда из норм: . По банаховости получаем, что сходится, и .По непрерывности получаем, что . , поэтому . |
Теорема: |
Пусть — линейный ограниченный оператор, и .
Тогда непрерывно обратим. |
Доказательство: |
TODO: Упражнение, доказать самим. Необходимо заткнуть. Некоторые идеи:
|
Перед доказательством теоремы Банаха о гомеоморфизме докажем для начала вспомогательную лемму.
Утверждение: |
Рассмотрим линейный оператор . Обозначим .
Тогда хотя бы одно всюду плотно в . |
Очевидно, что теореме Бэра о категориях, — 2 категории, то есть какое-то множество не является нигде не плотным. , — B-пространство (а значит, и полное метрическое), значит, поВспомним определение нигде не плотности: нигде не плотно, если . Раз не является нигде не плотным, то , то есть в каком-то открытом шаре. Теперь возьмем замкнутый шар , лежащий в этом открытом шаре, причем такой, что .Рассмотрим кольцо: . Обозначим , тогда кольцо имеет следующий вид: — кольцо с центром в .Заметим, что при параллельном переносе на свойство всюду плотности множества сохраняется.Будем рассматривать . Проверим, что войдет в какое-нибудь :, так как . Поскольку , то . , так как принадлежит кольцу.Подставляем и продолжаем неравенство выше: .Обозначим (это выражение не зависит от ), получаем, что .Итак, получили, что всюду плотно в кольце с центром в . Возьмем теперь любой , его можно представить как .По всюду плотности в кольце, найдется последовательность Взяв любую точку из в такая, что . Но . . , мы можем приблизить ее элементами , а значит, , то есть всюду плотно в . |
На основе доказанной леммы можем доказать теорему:
Теорема (Банаха, о гомеоморфизме): |
Пусть — линейный ограниченный оператор, причем осуществляющий взаимо однозначное отображение,
тогда — линейный ограниченный оператор. |
Доказательство: |
Если — биекция, то существует. Осталось показать, что он будет непрерывен.. Существует такое число , что (по доказанной лемме).Зафиксируем . Существует такое разложение , что . Покажем, как его получить.
Для любого можно подобрать . Дальше можно подобрать , и так далее...Получаем, что .
В качестве выберем , и получим необходимое разложение .Итак, теперь .Обозначим . Рассмотрим ряд из : : правда ли, что ряд из норм сходится? .Вспомним, что .: ряд из мажорируется убывающей геометрической прогрессией, а значит, сходится. Получили, что существует . Используем непрерывность : , получили, что .Рассмотрим норму Поскольку : . выбирался произвольный, получаем, что ограничен. |
Выведем пару важных следствий.
Определение: |
. Графиком оператора называется множество . |
В прямых произведениях множеств сходимость — покоординатная, поэтому можно говорить о замкнутости множеств.
Теорема (о замкнутом графике): |
. — ограничен — замкнут. |
Доказательство: |
Докажем в прямую сторону: пусть есть последовательность пар . Принадлежит ли ?(по единственности предела). Так как , то . Обратное следствие интереснее. Пусть замкнут.Можно показать, что банахово с нормой .Рассмотрим следующий оператор: . биективно отображает в .ограничен. По теореме Банаха о гомеоморфизме, так как ограничен и биективен, то существует , который также ограничен. Рассмотрим его. (по ограниченности). Получаем, что , откуда ограничен. |
Следующее следствие из теоремы Банаха связано с открытым отображением.
Определение: |
— произвольное отображение. Если для любого открытого открыто в , то называют открытым отображением. |
Теорема (об открытом отображении): |
Пусть — линейный ограниченный оператор. Тогда — открытое отображение. |
Доказательство: |
— линейное подпространство в . — фактор подпространства. , где — класс смежности .
Такое отображение называют каноническим вложением. TODO: доказать это — линейный ограниченный оператор, который переводит открытое множество в в открытое множество в .— оператор, ассоциированный с . , причем по построению ясно (нифига не ясно), что разные классы он переводит в разные точки . — ограничен (по теореме Банаха), значит открыт, суперпозиция открытых открыта, а, получается, и открыт. |