|
|
Строка 117: |
Строка 117: |
| |proof= | | |proof= |
| | | |
− | Если <tex> A </tex> {{---}} биекция, то <tex> A^{-1} </tex> существует. Осталось показать, что он будет непрерывен. | + | Если <tex> A </tex> {{---}} биекция, то <tex> A^{-1} </tex> существует. Осталось показать, что он будет ограничен. |
| | | |
− | <tex> Y_n = \{ y \in Y \mid \| A^{-1}(y) \| \le n \| y \| \} </tex>. | + | Представим <tex>Y</tex> как <tex>\bigcup\limits_{n=1}^{\infty} Y_n</tex>, <tex> Y_n = \{ y \in Y \mid \| A^{-1}(y) \| \le n \| y \| \}</tex> (заметим, что для леммы не требуется ограниченность оператора). |
| | | |
− | Существует такое число <tex> n_0 </tex>, что <tex> Y_{n_0} = Y^*, \mathrm{Cl} Y^* = Y </tex> (по доказанной лемме).
| + | По только что доказанной лемме, существет такое число <tex> n_0 </tex>, что <tex>\mathrm{Cl} Y_{n_0} = Y </tex>, обозначим этот <tex>Y_{n_0}</tex> как <tex>Y^*</tex>. |
| | | |
− | Зафиксируем <tex> y </tex>. Существует такое разложение <tex> y = \sum\limits_1^{\infty} y_n </tex>, что <tex> y_n \in Y^*, \| y_n \| \le \frac 3{2^n} \| y \| </tex>. Покажем, как его получить.
| + | Рассмотрим произвольный <tex> y \in Y </tex>. Покажем, что существует такое разложение <tex> y = \sum\limits_{n=1}^{\infty} y_n </tex>, что <tex> y_n \in Y^*, \| y_n \| \le \frac 3{2^n} \| y \| </tex>. |
| | | |
− | {{TODO|t=Ниже где-то потерялась норма y. Вроде она должна быть.}} | + | По всюду плотности, для любого <tex> \varepsilon </tex> можно подобрать <tex> y_1 \in Y^* : \| y - y_1 \| < \varepsilon \| y \| </tex>. |
| + | Дальше можно подобрать <tex> y_2 \in Y^* : \| (y - y_1) - y_2 \| < \frac {\varepsilon}2 \| y \| </tex>, и так далее, получаем, что <tex> \| y - \sum\limits_{k = 1}^n y_k \| < \frac {\varepsilon}{2^{n-1}} \| y \| </tex>. |
| | | |
− | Для любого <tex> \varepsilon </tex> можно подобрать <tex> y_1 : \| y - y_1 \| < \varepsilon \| y \| </tex>.
| + | Проверим, что для всех <tex>y_n</tex> их норма удовлетворяет условию разложения: <tex> \| y_n \| \le \| \sum\limits_{k = 1}^n y_k - y + y - \sum\limits_{k = 1}^{n-1} y_k \|</tex><tex> \le \| y - \sum\limits_{k = 1}^n y_k \| + \| y - \sum\limits_{k = 1}^{n - 1} y_k \| \le \frac {\varepsilon}{2^{n-1}} \| y \| + \frac {\varepsilon}{2^{n-2}} \| y \| = \frac {3\varepsilon}{2^{n-2}} \| y \| </tex> |
− | Дальше можно подобрать <tex> y_2 : \| (y - y_1) - y_2 \| < \frac {\varepsilon}2 \| y \| </tex>, и так далее...
| |
| | | |
− | Получаем, что <tex> \| y - \sum\limits_{k = 1}^n y_k \| < \frac {\varepsilon}{2^{n-1}} \| y \| </tex>.
| + | В качестве <tex> \varepsilon </tex> выберем <tex> \frac 14 </tex>, и получим необходимое разложение <tex> y </tex>. |
− | | |
− | <tex> \| y_n \| \le \| y - \sum\limits_{k = 1}^n y_k \| + \| y - \sum\limits_{k = 1}^{n - 1} y_k \| \le \frac {\varepsilon}{2^{n-1}} \| y \| + \frac {\varepsilon}{2^{n-2}} \| y \| = \frac {3\varepsilon}{2^{n-1}} \| y \| </tex>
| |
− | | |
− | В качестве <tex> \varepsilon </tex> выберем <tex> \frac 12 </tex>, и получим необходимое разложение <tex> y </tex>. | |
| | | |
| Итак, теперь <tex> y = \sum\limits_1^{\infty} y_n, y_n \in Y^*, \| y_n \| \le \frac 3{2^n} \| y \| </tex>. | | Итак, теперь <tex> y = \sum\limits_1^{\infty} y_n, y_n \in Y^*, \| y_n \| \le \frac 3{2^n} \| y \| </tex>. |
| | | |
− | Обозначим <tex> x_n = A^{-1}(y_n) </tex>. Рассмотрим ряд из <tex> x_n </tex>: <tex> \sum\limits_{n=1}^{\infty} x_n </tex>: правда ли, что ряд из норм сходится? <tex> \sum\limits_{n=1}^{\infty} \| x_n \| < \infty </tex>. | + | Обозначим <tex> x_n = A^{-1}y_n </tex>. Рассмотрим ряд из <tex> x_n </tex>: <tex> \sum\limits_{n=1}^{\infty} x_n </tex>, проверим сходимость ряда из норм: <tex> \sum\limits_{n=1}^{\infty} \| x_n \| < \infty </tex>. |
| | | |
− | Вспомним, что <tex> y_n \in Y_{n_0} </tex>. | + | Вспомним, что <tex> y_n \in Y^* = Y_{n_0} </tex>. |
| | | |
− | <tex> \| x_n \| = \| A^{-1}(y_n) \| \le n_0 \| y_n \| \le n_0 \frac 3{2^n} \| y \| </tex>: ряд из <tex> \| x_n \| </tex> мажорируется убывающей геометрической прогрессией, а значит, сходится. Получили, что существует <tex> x = \sum\limits_{n=1}^{\infty} x_n </tex>. | + | <tex> \| x_n \| = \| A^{-1} y_n \| \le n_0 \| y_n \| \le n_0 \frac 3{2^n} \| y \| </tex>: ряд из <tex> \| x_n \| </tex> мажорируется убывающей геометрической прогрессией, а значит, сходится. Получили, что существует <tex> x = \sum\limits_{n=1}^{\infty} x_n </tex>. |
| | | |
− | Используем непрерывность <tex> A </tex>: <tex> Ax = \sum\limits_{n=1}^{\infty} Ax_n = \sum\limits_{n=1}^{\infty} y_n = y </tex>, получили, что <tex> Ax = y, A^{-1}(y) = x </tex>. | + | Используем непрерывность <tex> A </tex>: <tex> Ax = \sum\limits_{n=1}^{\infty} Ax_n = \sum\limits_{n=1}^{\infty} y_n = y </tex>, получили, что <tex> Ax = y, A^{-1}y = x </tex>. |
| | | |
− | Рассмотрим норму <tex> A^{-1}(y) </tex>: <tex> \| A^{-1}(y) \| = \| x \| = \| \sum\limits_{n=1}^{\infty} x_n \| \le \sum\limits_{n=1}^{\infty} 3n_0 \| y \| \frac 1{2^n} = 3n_0 \| y \| </tex>. | + | Рассмотрим норму <tex> A^{-1}y </tex>: <tex> \| A^{-1} y \| = \| x \| = \| \sum\limits_{n=1}^{\infty} x_n \| \le \sum\limits_{n=1}^{\infty} 3n_0 \| y \| \frac 1{2^n} = 3n_0 \| y \| </tex>. |
| | | |
| Поскольку <tex> y </tex> выбирался произвольный, получаем, что <tex> A^{-1} </tex> ограничен. | | Поскольку <tex> y </tex> выбирался произвольный, получаем, что <tex> A^{-1} </tex> ограничен. |
Эта статья находится в разработке!
Определение: |
Оператор [math] A : X \to Y [/math] называется непрерывно обратимым, если существует [math] A^{-1} : Y \to X [/math] и [math] \| A^{-1} \| \lt \infty [/math].
TODO: от обратного оператора требуется, чтобы он был определен на всем кодомене, или только на образе? |
Теорема (Банах, о непрерывной обратимости I-C): |
Пусть [math] X [/math] — B-пространство, оператор [math] C : X \to X, C \in \mathbb{L}(X) [/math] и [math] \| C \| \lt 1 [/math].
Тогда оператор [math] I - C [/math], где [math] I [/math] — тождественный оператор, непрерывно обратим. |
Доказательство: |
[math]\triangleright[/math] |
[math] \mathbb{L}(X) [/math] — B-пространство.
Рассмотрим следующие суммы: [math] S_n = \sum\limits_{k=0}^n C^k [/math].
[math] (I - C)S_n = \sum\limits_{k=0}^n (C^k - C^{k + 1}) = I - C^{n + 1} [/math].
[math] \sum\limits_{k=0}^{\infty} C^k [/math] — ряд в B-пространстве [math] \mathbb{L}(X) [/math] сходится, если сходится ряд из соответствующих норм. Из того, что [math] \| C^k \| \le \| C \|^k [/math], получаем [math] \| \sum\limits_{k=0}^{\infty} C^k \| \le
\sum\limits_{k=0}^{\infty} \| C \|^k = \frac 1{1 - \| C \|} \lt \infty [/math].
Так как [math] \| C \| \lt 1 [/math], то существует такой [math] S \in \mathbb{L}(X) [/math], что [math] S = \sum\limits_{k=0}^{\infty} C^k [/math].
[math] S_n \xrightarrow[n \to \infty]{} S [/math]. Поскольку [math] \| C \| \lt 1 [/math], то [math] \| C^k \| \to 0 [/math], а значит, и [math] C^k \to \mathbb{O} [/math].
[math] (I - C)S_n = I - C^{n + 1} [/math]. Устремляя [math] n [/math] к бесконечности, получаем [math] (I - C)S = I [/math], а значит [math] S = \sum\limits_{k=0}^{\infty} C^k = (I - C)^{-1} [/math] — ограниченный оператор. |
[math]\triangleleft[/math] |
Трактовка этой теоремы: [math] Ix = x [/math], [math] I [/math] — непрерывно обратимый оператор. При каких условиях на оператор [math] C [/math] оператор [math] I - C [/math] сохраняет ннепрерывную обратимость? Из теоремы выше известен ответ на этот вопрос: когда [math] \| C \| \lt 1 [/math], то есть "при малых возмущениях [math] I [/math] сохраняется его непрерывная обратимость".
Далее считаем, что пространства [math] X [/math] и [math] Y [/math] — всегда банаховы.
Определение: |
Рассмотрим уравнение [math] Ax = y [/math] при заданном [math] y [/math]. Если для такого уравнения можно написать [math] \| x \| \le \alpha \| y \| [/math], где [math] \alpha [/math] — константа, то говорят, что это уравнение допускает априорную оценку решений.
TODO: Это для всех y сразу, или для каждого y своя константа? |
[math] R(A) = \{ Ax \mid x \in X \} [/math] — область значений оператора [math] A [/math], является линейным множеством, но может быть незамкнутым. Однако, верно следующее:
Утверждение: |
Если [math] A [/math] непрерывен, и уравнение [math] Ax = y [/math] допускает априорную оценку решений, то [math] R(A) = \mathrm{Cl} R(A) [/math]. |
[math]\triangleright[/math] |
Возьмем сходящуюся последовательсть [math] y_n \in R(A), y_n \to y [/math]. Нужно проверить, правда ли [math] y \in R(A) [/math], или, что то же самое, что уравнение [math] Ax = y [/math] имеет решение для такого [math] y [/math].
[math] y_n \to y \implies \| y_n - y_m \| \to 0 [/math]. Можно выбрать такую подпоследовательность [math] y_n [/math], что для этой подпоследовательности после перенумерации будет выполняться [math] \| y_n - y_{n+1} \| \lt \frac 1{2^n} [/math].
По линейности [math] R(A) [/math]: [math] y_{n+1} - y_n \in R(A) [/math] и для любого [math] n [/math] существует [math] x_n: A x_n = y_{n+1} - y_n [/math].
Поскольку уравнение [math] Ax = y [/math] допускает априорную оценку решений, имеем [math] \| x_n \| \le \alpha \| y_{n+1} - y_n \| [/math].
Рассмотрим следующий ряд: [math] \sum\limits_{n=1}^{\infty} x_n [/math]. Сумма ряда из норм: [math] \sum\limits_{n=1}^{\infty} \| x_n \| \le \alpha \sum\limits_{n=1}^{\infty} \| y_{n+1} - y_n \| \le \alpha \sum\limits_{n=1}^{\infty} \frac 1{2^n} = \alpha [/math]. По банаховости [math] X [/math] получаем, что [math] \sum\limits_{n=1}^{\infty} x_n [/math] сходится, и [math] \sum\limits_{n=1}^{\infty} x_n = x [/math].
По непрерывности [math] A [/math] получаем, что [math] Ax = A \sum\limits_{n=1}^{\infty} x_n = \sum\limits_{n=1}^{\infty} A x_n = \sum\limits_{n=1}^{\infty} y_{n+1} - y_n = y - y_1 [/math].
[math] Ax = y - y_1, y = Ax + y_1 = Ax + A x_0 = A(x + x_0) [/math], поэтому [math] y \in R(A) [/math]. |
[math]\triangleleft[/math] |
Теорема: |
Пусть [math] A : X \to Y [/math] — линейный ограниченный оператор, и [math]\exists m \gt 0: m \| x \| \le \| Ax \| [/math].
Тогда [math] A [/math] непрерывно обратим. |
Доказательство: |
[math]\triangleright[/math] |
TODO: Упражнение, доказать самим. Необходимо заткнуть.
Некоторые идеи:
- Можно заметить, что в ядре только нулевой вектор, в противном случае получим [math] 0 \lt m \|x\| \le \|A x\| = 0[/math]. Из этого также следует, что оператор инъективен: пусть [math]A x_1 = y, A x_2 = y[/math], тогда [math]A (x_1 - x_2) = 0[/math], что возможно только когда [math]x_1 = x_2[/math]. Вообще если бы мы могли показать, что из того, что размерность ядра равна 0 следует, что образ совпадает с [math]Y[/math], было бы неплохо. (upd: видимо, это неправда, рассмотрим оператор из R^n -> R^{n+1}, действующий как I, но дописывающий к последней координате 0). Тогда бы у нас оператор был взаимо однозначным, мы бы определили [math]A^{-1}[/math] на всем [math]Y[/math] и для любого [math]y[/math] рассмотрели [math]x = A^{-1} y[/math]. Тогда [math] m \|x\| = m \|A^{-1} y \| \le \|A A^{-1} y\| \implies \|A^{-1} y\| \le \frac{1}{m} \|y\|[/math], то есть оператор ограничен константой [math]\frac{1}{m}[/math].
- Также можно заметить, что это отображение допускает априорную оценку решения, так как [math]\|x\| \le \frac{1}{m} \|A x\|[/math], из чего по уже доказанному следует замкнутость образа (неясно только нафига это может понадобиться) --Дмитрий Герасимов 17:16, 9 января 2013 (GST)
|
[math]\triangleleft[/math] |
Перед доказательством теоремы Банаха о гомеоморфизме докажем для начала вспомогательную лемму.
Утверждение: |
Рассмотрим линейный оператор [math] A : X \to Y [/math]. Обозначим [math] X_n = \{ x \in X: \| Ax \| \le n \| x \| \} [/math].
Тогда хотя бы одно [math] X_n [/math] всюду плотно в [math] X [/math]. |
[math]\triangleright[/math] |
Очевидно, что [math] X = \bigcup\limits_{n=1}^{\infty} X_n [/math], [math] X [/math] — B-пространство (а значит, и полное метрическое), значит, по теореме Бэра о категориях, [math] X [/math] — 2 категории, то есть какое-то множество [math]X_{n_0}[/math] не является нигде не плотным.
Вспомним определение нигде не плотности: [math]A[/math] нигде не плотно, если [math]\forall V \exists U \subset V: A \cap U = \emptyset[/math]. Раз [math]X_{n_0}[/math] не является нигде не плотным, то [math]\exists V \forall U \subset V: X_{n_0} \cap U \ne \emptyset[/math], то есть [math]X_{n_0}[/math] в каком-то открытом шаре. Теперь возьмем замкнутый шар [math]\overline V_r(a)[/math], лежащий в этом открытом шаре, причем такой, что [math]a \in X_{n_0}[/math].
Рассмотрим кольцо: [math] \{z \mid \frac r2 \le \| z - a \| \le r \} [/math]. Обозначим [math] y = z - a [/math], тогда кольцо имеет следующий вид: [math] \{\frac r2 \le \| y \| \le r \} [/math] — кольцо с центром в [math] 0 [/math].
Заметим, что при параллельном переносе на [math]a[/math] свойство всюду плотности множества [math] X_{n_0} [/math] сохраняется.
Будем рассматривать [math] z \in X_{n_0} \cap \{\frac r2 \le \| z - a \| \le r \}, y = z - a[/math]. Проверим, что [math]y[/math] войдет в какое-нибудь [math]X_n[/math]:
[math] \| Ay \| = \frac {\| A(z - a) \|}{\| y \|} \| y \| \le \frac 2r (\| Az \| + \| Aa \|) \| y \| [/math], так как [math] \| y \| \ge \frac r2 [/math].
Поскольку [math] z \in X_{n_0} [/math], то [math] \| Az \| \le n_0 \| z \| [/math].
[math] \| z \| \le \| a \| + \| z - a \| \le r + \| a \| [/math], так как [math] z [/math] принадлежит кольцу.
Подставляем и продолжаем неравенство выше: [math] \| Ay \| \le \frac2r (n_0 (r + \| a \|) + \| Aa \|) \| y \| [/math].
Обозначим [math] m = \lceil (n_0 (r + \| a \|) + \| Aa \|) \rceil [/math] (это выражение не зависит от [math] y [/math]), получаем, что [math] \| Ay \| \le m \| y \| \implies y \in X_m [/math].
Итак, получили, что [math] X_m [/math] всюду плотно в кольце с центром в [math] 0 [/math]. Возьмем теперь любой [math] x \in X [/math], его можно представить как [math] x = tz, z \in \{\frac r2 \le \| z \| \le r \} [/math].
По всюду плотности в кольце, найдется последовательность [math]y_p[/math] в [math]X_m \cap \{\frac r2 \le \| z \| \le r \}[/math] такая, что [math]y_p \to z [/math]. Но [math] ty_p \to tz = x [/math].
[math] \| A(ty_p) \| \le m \| t y_p \| \implies ty_p \in X_m [/math].
Взяв любую точку из [math] X [/math], мы можем приблизить ее элементами [math] t y_p \in X_m [/math], а значит, [math]\mathrm{Cl} \ X_m = X [/math], то есть [math]X_m[/math] всюду плотно в [math] X [/math]. |
[math]\triangleleft[/math] |
На основе доказанной леммы можем доказать теорему:
Теорема (Банаха, о гомеоморфизме): |
Пусть [math] A : X \to Y [/math] — линейный ограниченный оператор, причем осуществляющий взаимо однозначное отображение,
тогда [math] A^{-1} [/math] — линейный ограниченный оператор. |
Доказательство: |
[math]\triangleright[/math] |
Если [math] A [/math] — биекция, то [math] A^{-1} [/math] существует. Осталось показать, что он будет ограничен.
Представим [math]Y[/math] как [math]\bigcup\limits_{n=1}^{\infty} Y_n[/math], [math] Y_n = \{ y \in Y \mid \| A^{-1}(y) \| \le n \| y \| \}[/math] (заметим, что для леммы не требуется ограниченность оператора).
По только что доказанной лемме, существет такое число [math] n_0 [/math], что [math]\mathrm{Cl} Y_{n_0} = Y [/math], обозначим этот [math]Y_{n_0}[/math] как [math]Y^*[/math].
Рассмотрим произвольный [math] y \in Y [/math]. Покажем, что существует такое разложение [math] y = \sum\limits_{n=1}^{\infty} y_n [/math], что [math] y_n \in Y^*, \| y_n \| \le \frac 3{2^n} \| y \| [/math].
По всюду плотности, для любого [math] \varepsilon [/math] можно подобрать [math] y_1 \in Y^* : \| y - y_1 \| \lt \varepsilon \| y \| [/math].
Дальше можно подобрать [math] y_2 \in Y^* : \| (y - y_1) - y_2 \| \lt \frac {\varepsilon}2 \| y \| [/math], и так далее, получаем, что [math] \| y - \sum\limits_{k = 1}^n y_k \| \lt \frac {\varepsilon}{2^{n-1}} \| y \| [/math].
Проверим, что для всех [math]y_n[/math] их норма удовлетворяет условию разложения: [math] \| y_n \| \le \| \sum\limits_{k = 1}^n y_k - y + y - \sum\limits_{k = 1}^{n-1} y_k \|[/math][math] \le \| y - \sum\limits_{k = 1}^n y_k \| + \| y - \sum\limits_{k = 1}^{n - 1} y_k \| \le \frac {\varepsilon}{2^{n-1}} \| y \| + \frac {\varepsilon}{2^{n-2}} \| y \| = \frac {3\varepsilon}{2^{n-2}} \| y \| [/math]
В качестве [math] \varepsilon [/math] выберем [math] \frac 14 [/math], и получим необходимое разложение [math] y [/math].
Итак, теперь [math] y = \sum\limits_1^{\infty} y_n, y_n \in Y^*, \| y_n \| \le \frac 3{2^n} \| y \| [/math].
Обозначим [math] x_n = A^{-1}y_n [/math]. Рассмотрим ряд из [math] x_n [/math]: [math] \sum\limits_{n=1}^{\infty} x_n [/math], проверим сходимость ряда из норм: [math] \sum\limits_{n=1}^{\infty} \| x_n \| \lt \infty [/math].
Вспомним, что [math] y_n \in Y^* = Y_{n_0} [/math].
[math] \| x_n \| = \| A^{-1} y_n \| \le n_0 \| y_n \| \le n_0 \frac 3{2^n} \| y \| [/math]: ряд из [math] \| x_n \| [/math] мажорируется убывающей геометрической прогрессией, а значит, сходится. Получили, что существует [math] x = \sum\limits_{n=1}^{\infty} x_n [/math].
Используем непрерывность [math] A [/math]: [math] Ax = \sum\limits_{n=1}^{\infty} Ax_n = \sum\limits_{n=1}^{\infty} y_n = y [/math], получили, что [math] Ax = y, A^{-1}y = x [/math].
Рассмотрим норму [math] A^{-1}y [/math]: [math] \| A^{-1} y \| = \| x \| = \| \sum\limits_{n=1}^{\infty} x_n \| \le \sum\limits_{n=1}^{\infty} 3n_0 \| y \| \frac 1{2^n} = 3n_0 \| y \| [/math].
Поскольку [math] y [/math] выбирался произвольный, получаем, что [math] A^{-1} [/math] ограничен. |
[math]\triangleleft[/math] |
Выведем пару важных следствий.
Определение: |
[math] A : X \xrightarrow[]{linear} Y [/math]. Графиком оператора [math] A [/math] называется множество [math] G(A) = \{ (x, Ax) \mid x \in X \}, G(A) \subset X \times Y [/math]. |
В прямых произведениях множеств сходимость — покоординатная, поэтому можно говорить о замкнутости множеств.
Теорема (о замкнутом графике): |
[math] A : X \xrightarrow[]{linear} Y [/math]. [math] A [/math] — ограничен [math] \iff [/math] [math] G(A) [/math] — замкнут. |
Доказательство: |
[math]\triangleright[/math] |
Докажем в прямую сторону: пусть есть последовательность пар [math] (x_n, y_n) \to (x, y) [/math]. Принадлежит ли [math] (x, y)\, G(A) [/math] ?
[math] y_n = Ax_n, x_n \to x \implies Ax_n \to Ax, y_n \to y \implies Ax=y [/math] (по единственности предела).
Так как [math] Ax = y [/math], то [math] (x, Ax) = (x, y) \in G(A) [/math].
Обратное следствие интереснее.
Пусть [math] G(A) = \{ (x, Ax) \mid x \in X \} [/math] замкнут.
Можно показать, что [math] X \times Y [/math] банахово с нормой [math] \| (x, y) \| = \| x \| + \| y \| [/math].
Рассмотрим следующий оператор: [math] T : (X \times Y) \to X, T(x, Ax) = x [/math].
[math] T [/math] биективно отображает [math] G(A) [/math] в [math] X [/math].
[math] \| x \| = \| T(x, Ax) \| \le \| (x, Ax) \| \implies T [/math] ограничен.
По теореме Банаха о гомеоморфизме, так как [math] T [/math] ограничен и биективен, то существует [math] T^{-1} [/math], который также ограничен. Рассмотрим его.
[math] T^{-1}(x) = (x, Ax), \| T^{-1}(x) \| = \| x \| + \| Ax \| \le M \| x \| [/math] (по ограниченности). Получаем, что [math] \| Ax \| \le (M - 1) \| x \| [/math], откуда [math] A [/math] ограничен. |
[math]\triangleleft[/math] |
Следующее следствие из теоремы Банаха связано с открытым отображением.
Определение: |
[math] F : X \to Y [/math] — произвольное отображение. Если для любого открытого [math] G \subset X [/math] [math] F(G) [/math] открыто в [math] Y [/math], то [math] F [/math] называют открытым отображением. |
Теорема (об открытом отображении): |
Пусть [math] A : X \to Y [/math] — линейный ограниченный оператор. Тогда [math] A [/math] — открытое отображение. |
Доказательство: |
[math]\triangleright[/math] |
[math] Z = \mathrm{Ker} A [/math] — линейное подпространство в [math] X [/math]. [math] X|_Z [/math] — фактор подпространства.
[math] i : X \to X|_Z, i(x) = [x][/math], где [math] [x] [/math] — класс смежности [math] x [/math].
TODO: Отсюда и до конца полный мрак
Такое отображение называют каноническим вложением. [math] i [/math] — линейный ограниченный оператор, который переводит открытое множество в [math] X [/math] в открытое множество в [math] X|_Z [/math].
TODO: доказать это
[math] U_A : X|_Z \to Y, U_A([x]) = Ax [/math] — оператор, ассоциированный с [math] A [/math].
[math] A = U_A \cdot i [/math], причем по построению ясно (нифига не ясно), что разные классы он переводит в разные точки [math] Y [/math].
[math] U_A : X|_Z \xrightarrow[]{bijective} R(A) \implies U_A^{-1} [/math] — ограничен (по теореме Банаха), значит [math] U_A [/math] открыт, суперпозиция открытых открыта, а, получается, и [math] A [/math] открыт. |
[math]\triangleleft[/math] |