Теорема Банаха об обратном операторе — различия между версиями
(понятность) |
|||
Строка 88: | Строка 88: | ||
Вспомним определение нигде не плотности: <tex>A</tex> нигде не плотно, если <tex>\forall V \exists U \subset V: A \cap U = \emptyset</tex>. Раз <tex>X_{n_0}</tex> '''не''' является нигде не плотным, то <tex>\exists V \forall U \subset V: X_{n_0} \cap U \ne \emptyset</tex>, то есть <tex>X_{n_0}</tex> всюду плотно в каком-то открытом шаре. Теперь возьмем замкнутый шар <tex>\overline V_r(a)</tex>, лежащий в этом открытом шаре, причем такой, что <tex>a \in X_{n_0}</tex>. | Вспомним определение нигде не плотности: <tex>A</tex> нигде не плотно, если <tex>\forall V \exists U \subset V: A \cap U = \emptyset</tex>. Раз <tex>X_{n_0}</tex> '''не''' является нигде не плотным, то <tex>\exists V \forall U \subset V: X_{n_0} \cap U \ne \emptyset</tex>, то есть <tex>X_{n_0}</tex> всюду плотно в каком-то открытом шаре. Теперь возьмем замкнутый шар <tex>\overline V_r(a)</tex>, лежащий в этом открытом шаре, причем такой, что <tex>a \in X_{n_0}</tex>. | ||
+ | |||
+ | Заметим, что множество <tex>X_{n_0}</tex> также всюду плотно в кольце <tex>R = \{z \mid \frac r2 \le \| z - a \| \le r \}</tex>. Сдвинем и множество <tex>X_{n_0}</tex>, и кольцо на <tex>a</tex>, то есть центр кольца окажется в точке <tex>0</tex>. Сдвинутое <tex>X_{n_0}</tex> будет также всюду плотно в сдвинутом кольце. Теперь покажем, что найдется такое множество <tex>X_m</tex>, что пересечение сдвинутого <tex>R</tex> и сдвинутого <tex>X_{n_0}</tex> лежит в <tex>X_m</tex>, то есть <tex>X_m</tex> будет всюду плотно в сдвинутом кольце. | ||
Рассмотрим кольцо: <tex> \{z \mid \frac r2 \le \| z - a \| \le r \} </tex>. Обозначим <tex> y = z - a </tex>, тогда кольцо имеет следующий вид: <tex> \{\frac r2 \le \| y \| \le r \} </tex> {{---}} кольцо с центром в <tex> 0 </tex>. | Рассмотрим кольцо: <tex> \{z \mid \frac r2 \le \| z - a \| \le r \} </tex>. Обозначим <tex> y = z - a </tex>, тогда кольцо имеет следующий вид: <tex> \{\frac r2 \le \| y \| \le r \} </tex> {{---}} кольцо с центром в <tex> 0 </tex>. | ||
− | + | Будем рассматривать <tex> z \in X_{n_0} \cap \{\frac r2 \le \| z - a \| \le r \}, y = z - a</tex>. Проверим, что <tex>y</tex> войдет в какое-нибудь <tex>X_m</tex>: | |
− | |||
− | Будем рассматривать <tex> z \in X_{n_0} \cap \{\frac r2 \le \| z - a \| \le r \}, y = z - a</tex>. Проверим, что <tex>y</tex> войдет в какое-нибудь <tex> | ||
<tex> \| Ay \| = \frac {\| A(z - a) \|}{\| y \|} \| y \| \le \frac 2r (\| Az \| + \| Aa \|) \| y \| </tex>, так как <tex> \| y \| \ge \frac r2 </tex>. | <tex> \| Ay \| = \frac {\| A(z - a) \|}{\| y \|} \| y \| \le \frac 2r (\| Az \| + \| Aa \|) \| y \| </tex>, так как <tex> \| y \| \ge \frac r2 </tex>. |
Версия 19:39, 16 января 2013
Содержание
Определение: |
Оператор | называется непрерывно обратимым, если существует и , причем должен быть определен на всем .
Теорема (Банах, о непрерывной обратимости I-C): |
Пусть — B-пространство, оператор и .
Тогда оператор , где — тождественный оператор, непрерывно обратим. |
Доказательство: |
— B-пространство. Рассмотрим следующие суммы: .. — ряд в B-пространстве сходится, если сходится ряд из соответствующих норм. Покажем это: пусть есть операторный ряд . Рассмотрим последовательность частичных сумм , она будет сходиться если сходится в себе (по Банаховости пространства). Тогда , а (так как для конечного числа членов норма суммы меньше суммы норм), но так как последовательность норм сходится, она также сходится в себе и , то есть частичные суммы сходятся в себе, а, значит, и сходятся. Из того, что , получаем .Так как , то существует такой , что .. Поскольку , то , а значит, и . . Устремляя к бесконечности, получаем , а значит — ограниченный оператор. |
Трактовка этой теоремы:
, — непрерывно обратимый оператор. При каких условиях на оператор оператор сохраняет ннепрерывную обратимость? Из теоремы выше известен ответ на этот вопрос: когда , то есть "при малых возмущениях сохраняется его непрерывная обратимость".Далее считаем, что пространства
и — всегда банаховы.
Определение: |
Рассмотрим уравнение | при заданном . Если для такого уравнения можно написать , где — константа, то говорят, что это уравнение допускает априорную оценку решений.
— область значений оператора , является линейным множеством, но может быть незамкнутым. Однако, верно следующее:
Утверждение: |
Если непрерывен, и уравнение допускает априорную оценку решений, то . |
Возьмем сходящуюся последовательсть . Нужно проверить, правда ли , или, что то же самое, что уравнение имеет решение для такого .. Можно выбрать такую подпоследовательность , что для этой подпоследовательности после перенумерации будет выполняться . По линейности : и для любого существует .Поскольку уравнение допускает априорную оценку решений, имеем .Рассмотрим следующий ряд: . Сумма ряда из норм: . По банаховости получаем, что сходится, и .По непрерывности получаем, что . , поэтому . |
Теорема: |
Пусть — линейный ограниченный оператор, и .
Тогда непрерывно обратим. |
Доказательство: |
TODO: Упражнение, доказать самим. Необходимо заткнуть. Есть в Люстерике, Соболеве. стр.153 (1965г) Некоторые идеи:
|
Теорема Банаха о гомеоморфизме
Перед доказательством теоремы Банаха о гомеоморфизме докажем для начала вспомогательную лемму.
Утверждение: |
Рассмотрим линейный оператор . Обозначим .
Тогда хотя бы одно всюду плотно в . |
Очевидно, что теореме Бэра о категориях, — 2 категории, то есть какое-то множество не является нигде не плотным. , — B-пространство (а значит, и полное метрическое), значит, поВспомним определение нигде не плотности: нигде не плотно, если . Раз не является нигде не плотным, то , то есть всюду плотно в каком-то открытом шаре. Теперь возьмем замкнутый шар , лежащий в этом открытом шаре, причем такой, что .Заметим, что множество также всюду плотно в кольце . Сдвинем и множество , и кольцо на , то есть центр кольца окажется в точке . Сдвинутое будет также всюду плотно в сдвинутом кольце. Теперь покажем, что найдется такое множество , что пересечение сдвинутого и сдвинутого лежит в , то есть будет всюду плотно в сдвинутом кольце.Рассмотрим кольцо: . Обозначим , тогда кольцо имеет следующий вид: — кольцо с центром в .Будем рассматривать . Проверим, что войдет в какое-нибудь :, так как . Поскольку , то . , так как принадлежит кольцу.Подставляем и продолжаем неравенство выше: .Обозначим (это выражение не зависит от ), получаем, что .Итак, получили, что всюду плотно в кольце с центром в . Возьмем теперь любой , его можно представить как .По всюду плотности в кольце, найдется последовательность Взяв любую точку из в такая, что . Но . . , мы можем приблизить ее элементами , а значит, , то есть всюду плотно в . |
На основе доказанной леммы можем доказать теорему:
Теорема (Банаха, о гомеоморфизме): |
Пусть — линейный ограниченный оператор, причем осуществляющий биекцию, тогда — линейный ограниченный оператор. |
Доказательство: |
Если — биекция, то существует. Осталось показать, что он будет ограничен.Представим как , (заметим, что для леммы не требуется ограниченность оператора).По только что доказанной лемме, существет такое число , что , обозначим этот как .Рассмотрим произвольный . Покажем, что существует такое разложение , что .По всюду плотности, для любого можно подобрать . Дальше можно подобрать , и так далее, получаем, что .Проверим, что для всех их норма удовлетворяет условию разложения:В качестве выберем , и получим необходимое разложение .Итак, теперь .Обозначим . Рассмотрим ряд из : , проверим сходимость ряда из норм: .Вспомним, что .: ряд из мажорируется убывающей геометрической прогрессией, а значит, сходится. Получили, что существует . Используем непрерывность : , получили, что .Рассмотрим норму Поскольку : . выбирался произвольный, получаем, что ограничен. |
Теорема о замкнутом графике
Определение: |
Графиком линейного оператора | называется множество .
В прямых произведениях множеств сходимость — покоординатная, поэтому можно говорить о замкнутости множеств.
Теорема (о замкнутом графике): |
Линейный ограничен — замкнут. |
Доказательство: |
Докажем в прямую сторону: пусть есть последовательность пар . Принадлежит ли ?(по единственности предела). Так как , то . Обратное следствие интереснее. Пусть замкнут.Можно показать, что банахово с нормой :
Рассмотрим следующий оператор: . биективно отображает в .ограничен. По теореме Банаха о гомеоморфизме, так как ограничен и биективен, то существует , который также ограничен. Рассмотрим его. (по ограниченности). Получаем, что , откуда ограничен. |
Теорема об открытом отображении
Определение: |
— произвольное отображение. Если для любого открытого открыто в , то называют открытым отображением. |
Теорема (об открытом отображении): |
Пусть — линейный ограниченный оператор. Тогда — открытое отображение. |
Доказательство: |
— линейное подпространство в . Рассмотрим TODO: доказать это, упражнение. Вообще интересно, как вводить норму в фактор-пространстве? Вот тут вводят как , выглядит логично, но Додонов все равно вроде об этом не говорил. — фактор-подпространство. , где — класс смежности , называется каноническим вложением в фактор-пространство. Оператор — линейный и ограниченный, переводит открытое множество в в открытое множество в , то есть окрытый.
TODO: например можно попробовать так: 1) - по свойствам фактор-множества2) - по свойствам фактор-множства показали линейность.3)Определим норму, как . Ясно, что она удовлетворяет аксиомам нормы. - показали ограниченность
Покажем, что разные классы переводит в разные точки , так как факторизация происходит по ядру : пусть и , это значит, что , по линейности , так как в ядре. Но тогда получили, что также в ядре, то есть отличается от на элемент ядра, и находятся в одном классе эквивалентности, получили противоречие.Таким образом, оператор биективен, следовательно, — ограничен (по теореме Банаха), значит — открытое отображение TODO: почему? Тут как-то надо, кажется, использовать, что для непрерывного отображения прообраз открытого множества открыт, но пока непонятно, а так как открытое и суперпозиция открытых отображение открыта, тоже открыт. |
Ссылочки: