Двоичная куча — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 91: Строка 91:
  
 
==Построение кучи за O(N) ==
 
==Построение кучи за O(N) ==
 +
 +
==Построение кучи за O(N) ==
 +
Дан массив <tex> A[0.. n - 1] </tex> требуются построить кучу с минимумом в корне. Наиболее очевидный способ построить кучу из неупорядоченного массива – это по очереди добавить все его элементы (сделать <tex> sift_down </tex>) . Временная оценка такого алгоритма <tex>O(\log{N})</tex>.  Однако можно построить кучу еще быстрее — за <tex> О(N)</tex>.
 +
Представим, что в массиве хранится дерево(у которого нулевой элемент, <tex>A[0]</tex> — элемент в корне, а потомками элемента <tex>A[i]</tex> являются <tex>A[2i+1]</tex> и <tex>A[2i+2]</tex>). Делаем <tex> sift_down </tex> для вершин имеющих хотя бы одного потомка (так как поддеревья , состоящие из одной вершины без потомков, уже упорядочены). На выходе получим искомую кучу. Докажем, что время работы <tex> O(N) </tex>
 +
|proof=
 +
Подсчитаем суммарное число операций за все время работы алгоритма. Пусть <tex> H </tex> высота дерева. Подсчитаю сумму, сколько нужно операций для перемещения вершины в лист.  <tex> N/4 </tex> вершин опустятся на 1, <tex> N/8 </tex> опустятся на 2 итд. Получим сумму
 +
<tex>  (N/2) * {\sum_{i}^logN \limits}\frac{i}{2^i}. {\sum_{i}^logN \limits}\frac{i}{2^i} = 4 </tex> Откуда получаем оценку <tex> O(N) </tex> 
  
 
== Источники ==
 
== Источники ==

Версия 19:19, 19 мая 2013

Определение

Определение:
Двоичная куча или пирамида — такое двоичное подвешенное дерево, для которого выполнены следующие три условия:
  • Значение в любой вершине не меньше, (если куча для максимума), чем значения её потомков.
  • На [math]i[/math]-ом слое [math]2^i[/math] вершин, кроме последнего. Слои нумеруются с нуля.
  • Последний слой заполнен слева направо (как показано на рисунке)


Пример кучи для максимума

Удобнее всего двоичную кучу хранить в виде массива [math]A[0..n-1][/math], у которого нулевой элемент, [math]A[0][/math] — элемент в корне, а потомками элемента [math]A[i][/math] являются [math]A[2i+1][/math] и [math]A[2i+2][/math]. Высота кучи определяется как высота двоичного дерева. То есть она равна количеству рёбер в самом длинном простом пути, соединяющем корень кучи с одним из её листьев. Высота кучи есть [math]O(\log{N})[/math], где [math]N[/math] — количество узлов дерева.

Чаще всего используют кучи для минимума (когда предок не больше детей) и для максимума (когда предок не меньше детей).

Двоичные кучи используют, например, для того, чтобы извлекать минимум из набора чисел за [math]O(\log{N})[/math]. Двоичные кучи — частный случай приоритетных очередей. Приоритетная очередь — это структура данных, которая позволяет хранить пары (значение и ключ) и поддерживает операции добавления пары, поиска пары с минимальным ключом и ее извлечение.

Базовые процедуры

Восстановление свойств кучи

Если в куче изменяется один из элементов, то она может перестать удовлетворять свойству упорядоченности. Для восстановления этого свойства служат процедуры sift_down (просеивание вниз) и sift_up (просеивание вверх). Если значение измененного элемента увеличивается, то свойства кучи восстанавливаются функцией sift_down(i). Работа процедуры: если [math]i[/math]-й элемент меньше, чем его сыновья, всё поддерево уже является кучей, и делать ничего не надо. В противном случае меняем местами [math]i[/math]-й элемент с наименьшим из его сыновей, после чего выполняем sift_down() для этого сына. Процедура выполняется за время [math]O(\log{N})[/math].

sift_down(i)
 // heap_size - количество элементов в куче
 if (2 * i + 1 <= A.heap_size) 
   left = A[2 * i + 1] // левый сын
 else
   left = inf
 if (2 * i + 2 <= A.heap_size) 
   right = A[2 * i + 2] // правый сын
 else
   right = inf
 if (left == right == inf) return
 if (right <= left && right < A[i])
   swap(A[2 * i + 2], A[i])
   sift_down(2 * i + 2)  
 if (left < A[i]) 
   swap(A[2 * i + 1], A[i])
   sift_down(2 * i + 1) 

Если значение измененного элемента уменьшается, то свойства кучи восстанавливаются функцией sift_up(i).

Работа процедуры: если элемент больше своего отца, условие 1 соблюдено для всего дерева, и больше ничего делать не нужно. Иначе, мы меняем местами его с отцом. После чего выполняем sift_up для этого отца. Иными словами, слишком большой элемент всплывает наверх. Процедура выполняется за время [math]O(\log{N})[/math].

sift_up(i)
if (i == 0) return //Мы в корне
 if (A[i] < A[i / 2])
   swap(A[i], A[i / 2]);
   sift_up(i / 2)

Извлечение минимального элемента

Выполняет извлечение минимального элемента из кучи за время [math]O(\log{N})[/math]. Извлечение выполняется в четыре этапа:

  1. Значение корневого элемента (он и является минимальным) сохраняется для последующего возврата.
  2. Последний элемент копируется в корень, после чего удаляется из кучи.
  3. Вызывается sift_down(i) для корня.
  4. Сохранённый элемент возвращается.

extract_min()
 min = A[0]
 A[0] = A[A.heap_size - 1]
 A.heap_size = A.heap_size - 1
 sift_down(0)
 return min

Добавление нового элемента

Выполняет добавление элемента в кучу за время [math]O(\log{N})[/math]. Добавление произвольного элемента в конец кучи, и восстановление свойства упорядоченности с помощью процедуры sift_up.

insert(key)
 A.heap_size = A.heap_size + 1
 A[A.heap_size - 1] = key
 sift_up(A.heap_size - 1)

Построение кучи за O(N)

Построение кучи за O(N)

Дан массив [math] A[0.. n - 1] [/math] требуются построить кучу с минимумом в корне. Наиболее очевидный способ построить кучу из неупорядоченного массива – это по очереди добавить все его элементы (сделать [math] sift_down [/math]) . Временная оценка такого алгоритма [math]O(\log{N})[/math]. Однако можно построить кучу еще быстрее — за [math] О(N)[/math]. Представим, что в массиве хранится дерево(у которого нулевой элемент, [math]A[0][/math] — элемент в корне, а потомками элемента [math]A[i][/math] являются [math]A[2i+1][/math] и [math]A[2i+2][/math]). Делаем [math] sift_down [/math] для вершин имеющих хотя бы одного потомка (так как поддеревья , состоящие из одной вершины без потомков, уже упорядочены). На выходе получим искомую кучу. Докажем, что время работы [math] O(N) [/math] |proof= Подсчитаем суммарное число операций за все время работы алгоритма. Пусть [math] H [/math] высота дерева. Подсчитаю сумму, сколько нужно операций для перемещения вершины в лист. [math] N/4 [/math] вершин опустятся на 1, [math] N/8 [/math] опустятся на 2 итд. Получим сумму [math] (N/2) * {\sum_{i}^logN \limits}\frac{i}{2^i}. {\sum_{i}^logN \limits}\frac{i}{2^i} = 4 [/math] Откуда получаем оценку [math] O(N) [/math]

Источники