Собственные векторы и собственные значения — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(определения)
(свойства)
Строка 52: Строка 52:
 
|about=
 
|about=
 
|statement=
 
|statement=
'''собственные векторы''', отвечающие различным '''собственным значениям''' образуют ЛНЗ набор
+
'''Собственные векторы''', отвечающие различным '''собственным значениям''' образуют ЛНЗ набор
 
|proof=
 
|proof=
1)база: рассмотрим <tex>\lambda \leftrightarrow x1 \ne 0_x \{x1\} - ЛНЗ</tex>  
+
1)База: рассмотрим <tex>\lambda \leftrightarrow x1 \ne 0_x \{x1\} - ЛНЗ</tex>  
 
2) <tex>\{x1,x2, ... , x_{m-1}\} \leftrightarrow \{\lambda _1, ... \lambda _ m-1 \}</tex> - ЛНЗ. Рассмотрим <tex>\{x1, ..., x_m \} </tex>- доказать что ЛНЗ.
 
2) <tex>\{x1,x2, ... , x_{m-1}\} \leftrightarrow \{\lambda _1, ... \lambda _ m-1 \}</tex> - ЛНЗ. Рассмотрим <tex>\{x1, ..., x_m \} </tex>- доказать что ЛНЗ.
  
Строка 65: Строка 65:
 
(1) - (2) : <tex>\alpha_1(\lambda_1 - \lambda_m)x_1 + ... + \alpha_m-1(\lambda_m-1 - \lambda_m)x_m-1 + 0_x = 0_x</tex>
 
(1) - (2) : <tex>\alpha_1(\lambda_1 - \lambda_m)x_1 + ... + \alpha_m-1(\lambda_m-1 - \lambda_m)x_m-1 + 0_x = 0_x</tex>
  
по предположению индукции <tex>\{x1,x2, ... , x_{m-1}\}</tex> - ЛНЗ  <tex>\Rightarrow \alpha_1 (\lambda_1-\lambda_m)=0  ...  \alpha_{m-1} (\lambda_{m-1} - \lambda_{m}) =0 </tex>, при этом все <tex>(\lambda_{i-1}-\lambda_m) \ne 0</tex>
+
По предположению индукции <tex>\{x1,x2, ... , x_{m-1}\}</tex> - ЛНЗ  <tex>\Rightarrow \alpha_1 (\lambda_1-\lambda_m)=0  ...  \alpha_{m-1} (\lambda_{m-1} - \lambda_{m}) =0 </tex>, при этом все <tex>(\lambda_{i-1}-\lambda_m) \ne 0</tex>
  
 
<tex>\Rightarrow </tex> все <tex>\alpha_i = 0</tex>
 
<tex>\Rightarrow </tex> все <tex>\alpha_i = 0</tex>
Строка 78: Строка 78:
 
|about=
 
|about=
 
|statement=
 
|statement=
множество всех собственных векторов, отвечающих одному и тому же собственному значению оператора <tex>A</tex>, образует подпространство пространства <tex>X</tex>.
+
Множество всех собственных векторов, отвечающих одному и тому же собственному значению оператора <tex>A</tex>, образует подпространство пространства <tex>X</tex>.
 
|proof=
 
|proof=
как утверждается, несложное упражнение.
+
Как утверждается, несложное упражнение.
 
}}
 
}}
  
Строка 88: Строка 88:
 
|neat =  
 
|neat =  
 
|definition=
 
|definition=
пусть <tex>L = \{</tex> все СВ <tex> x_i \leftrightarrow \lambda_i \}</tex> называют собственным подпространством <tex>\leftrightarrow</tex> СЗ <tex>\lambda_i</tex>
+
Пусть <tex>L = \{</tex> все СВ <tex> x_i \leftrightarrow \lambda_i \}</tex> называют собственным подпространством <tex>\leftrightarrow</tex> СЗ <tex>\lambda_i</tex>
 
}}
 
}}
  
Строка 97: Строка 97:
 
|about=
 
|about=
 
|statement=
 
|statement=
пусть L - лин оболочка<tex>\{ </tex> всех <tex>x_i \leftrightarrow \lambda_i\}</tex>
+
Пусть L - лин оболочка<tex>\{ </tex> всех <tex>x_i \leftrightarrow \lambda_i\}</tex>
пусть <tex>X_{\lambda i}</tex> - собственное подпространство X <tex>\leftrightarrow \lambda_i</tex>
+
Пусть <tex>X_{\lambda i}</tex> - собственное подпространство X <tex>\leftrightarrow \lambda_i</tex>
тогда <tex>L = X_{\lambda i}</tex>
+
Тогда <tex>L = X_{\lambda i}</tex>
 
|proof=
 
|proof=
сначала <tex>\subseteq</tex>  потом <tex>\supseteq</tex>  <tex>\Rightarrow</tex> доказательство
+
Сначала <tex>\subseteq</tex>  потом <tex>\supseteq</tex>  <tex>\Rightarrow</tex> доказательство
 
}}
 
}}
  
Строка 110: Строка 110:
 
|about= (следствие из теоремы)
 
|about= (следствие из теоремы)
 
|statement=
 
|statement=
у ЛО не может быть больше <tex>n</tex> СЗ, где <tex>n = dimX</tex>
+
У ЛО не может быть больше <tex>n</tex> СЗ, где <tex>n = dimX</tex>
|proof= как утверждается, несложное упражнение.
+
|proof=  
 +
Как утверждается, несложное упражнение.
 
}}
 
}}
  

Версия 02:14, 12 июня 2013

основные теоремы и определения

определения

Определение:
Пусть [math]A:X \to X[/math] - линейный оператор (ЛО)
[math]x\ne 0_X[/math] называется собственным вектором[math]A[/math], если [math]x \in L[/math], где [math]L[/math] - инвариантное подпространство [math]A[/math], b [math]dimL = 1[/math]


Определение:
Пусть [math]A:X \to X[/math]
[math]x\ne 0_X[/math] называется собственным вектором[math]A[/math], если существует [math]\lambda \in F : Ax = \lambda x[/math]


Лемма:
Предыдущие 2 определения эквивалентны
Доказательство:
[math]\triangleright[/math]

[math] (1) \Rightarrow (2) : x \in L, dim(L)=1 \Rightarrow Ax \in L (x \ne 0_x \Rightarrow basis L = \{x\}), then Ax =! \lambda x[/math]
[math] (1) \Leftarrow (2) : \exists \lambda: Ax=\lambda x \Rightarrow x \in[/math] одном.(одномерному) п.п.

[math]L =\{x\}, Ax = \lambda x \in L[/math]
[math]\triangleleft[/math]


Определение:
[math]\lambda[/math] в равенстве [math]Ax = \lambda x[/math] называется собственным числом(собственным значением) ЛО [math]A[/math]


Определение:
Спектром [math]\sigma[/math] ЛО называется множество всех его собственных значений
[math]\sigma (A) = \sigma _A = \{ \lambda _i \}[/math]


// здесь мог быть пример, но думаю всем и так понятно

свойства

Теорема:
Собственные векторы, отвечающие различным собственным значениям образуют ЛНЗ набор
Доказательство:
[math]\triangleright[/math]

1)База: рассмотрим [math]\lambda \leftrightarrow x1 \ne 0_x \{x1\} - ЛНЗ[/math] 2) [math]\{x1,x2, ... , x_{m-1}\} \leftrightarrow \{\lambda _1, ... \lambda _ m-1 \}[/math] - ЛНЗ. Рассмотрим [math]\{x1, ..., x_m \} [/math]- доказать что ЛНЗ.

[math]\sum\limits_{k=1}^m \alpha^i x_i = 0 [/math]

[math]A( \sum\limits_{k=1}^m \alpha_i x_i) = \sum\limits_{k=1}^m \alpha_i Ax_i = \sum\limits_{k=1}^m \alpha_i \lambda_i x_i = 0_x[/math] (1)

[math]\lambda_m( \sum\limits_{k=1}^m \alpha_i x_i) = \sum\limits_{k=1}^m \alpha_i \lambda_m x_i = 0_x[/math] (2)

(1) - (2) : [math]\alpha_1(\lambda_1 - \lambda_m)x_1 + ... + \alpha_m-1(\lambda_m-1 - \lambda_m)x_m-1 + 0_x = 0_x[/math]

По предположению индукции [math]\{x1,x2, ... , x_{m-1}\}[/math] - ЛНЗ [math]\Rightarrow \alpha_1 (\lambda_1-\lambda_m)=0 ... \alpha_{m-1} (\lambda_{m-1} - \lambda_{m}) =0 [/math], при этом все [math](\lambda_{i-1}-\lambda_m) \ne 0[/math]

[math]\Rightarrow [/math] все [math]\alpha_i = 0[/math]

[math]\Rightarrow \alpha_m x_m = 0_x [/math], где [math]x_m \ne 0[/math] те набор ЛНЗ
[math]\triangleleft[/math]


Лемма:
Множество всех собственных векторов, отвечающих одному и тому же собственному значению оператора [math]A[/math], образует подпространство пространства [math]X[/math].
Доказательство:
[math]\triangleright[/math]
Как утверждается, несложное упражнение.
[math]\triangleleft[/math]


Определение:
Пусть [math]L = \{[/math] все СВ [math] x_i \leftrightarrow \lambda_i \}[/math] называют собственным подпространством [math]\leftrightarrow[/math] СЗ [math]\lambda_i[/math]


Лемма:
Пусть L - лин оболочка[math]\{ [/math] всех [math]x_i \leftrightarrow \lambda_i\}[/math]

Пусть [math]X_{\lambda i}[/math] - собственное подпространство X [math]\leftrightarrow \lambda_i[/math]

Тогда [math]L = X_{\lambda i}[/math]
Доказательство:
[math]\triangleright[/math]
Сначала [math]\subseteq[/math] потом [math]\supseteq[/math] [math]\Rightarrow[/math] доказательство
[math]\triangleleft[/math]


Лемма ((следствие из теоремы)):
У ЛО не может быть больше [math]n[/math] СЗ, где [math]n = dimX[/math]
Доказательство:
[math]\triangleright[/math]
Как утверждается, несложное упражнение.
[math]\triangleleft[/math]

поиск СЗ и СВ

[math]x \ne 0_x[/math] и [math]Ax = \lambda x \Leftrightarrow Ax - \lambda I x = 0 \Leftrightarrow (A - \lambda I)X = 0 [/math]

[math]{C}= \begin{pmatrix} ({\alpha}_{11}- \lambda) \xi^1 & {\alpha}_{11} \xi^2 & \cdots & {\alpha}_{1n} \xi^n \\ {\alpha}_{21} \xi^1 & ({\alpha}_{22}- \lambda) \xi^2 & \cdots & {\alpha}_{2n} \xi^n \\ \vdots & \vdots & \ddots & \vdots \\ {\alpha}_{n1} \xi^1 & {\alpha}_{n2} \xi^2 & \cdots & ({\alpha}_{nn}- \lambda) \xi^n \\ \end{pmatrix}[/math]

если [math]det(A- \lambda E) \ne 0 \Rightarrow exists! [/math] тривиальное решение [math](0,0 ... ,0)^T[/math]

если [math]det(A- \lambda E) = 0 \Rightarrow exists [/math] нетривиальное решение [math]\Rightarrow exists[/math] СВ [math]x[/math]

[math]\chi_A (\lambda) = 0 [/math] - характеристический полином

[math]det(A- \lambda E) = 0[/math] - уравнение на СЗ, а [math]det(A- \lambda E)X = 0[/math] - уравнение на СВ

из уравнения на СЗ находим [math]\{\lambda_i \}[/math] - корпни характеристического полинома, они же - характеристические числа

затем подставляем каждую [math]\lambda_i[/math] в уравнение на СВ по очереди на находим СВ [math]x_i \leftrightarrow \lambda_i[/math]

так найдутся все СВ.

Теорема:
пусть [math] A : X \to X, X[/math] над С, тогда у [math]A[/math] есть хотя бы одно СЗ и один СВ.
Доказательство:
[math]\triangleright[/math]

одна из теорем высшей алгебры гласит, что у [math]\forall[/math] полинома комплексной переменной всегда есть корень. пример:

пример к теореме
[math]\triangleleft[/math]