Идеальное хеширование — различия между версиями
 (→Первый уровень)  | 
				 (→Второй уровень)  | 
				||
| Строка 14: | Строка 14: | ||
=== Второй уровень ===  | === Второй уровень ===  | ||
| − | На данном уровне будет использовать вторичную хеш-таблицу <tex>S_j</tex> со своей функций <tex>h_j</tex>. <tex>S_j</tex> будет хранить все ключи, хешированные в ячейку <tex>j</tex>. Соответственно, хеш-функция будет вида <tex>h_j((a_j\cdot k + b_j) \  | + | На данном уровне будет использовать вторичную хеш-таблицу <tex>S_j</tex> со своей функций <tex>h_j</tex>. <tex>S_j</tex> будет хранить все ключи, хешированные в ячейку <tex>j</tex>. Соответственно, хеш-функция будет вида <tex>h_j((a_j\cdot k + b_j) \bmod p) \bmod m_j</tex>.<br>  | 
Благодаря такому подходу, так как ни в одной из вторичных таблиц нет ни одной коллизии, время поиска в худшем случае будет равно константе. Но для того, чтобы гарантировать отсутствие коллизий на втором уровне, требуется, чтобы размер <tex>m_j</tex> хеш-таблицы <tex>S_j</tex> был равен квадрату числа <tex>n_j</tex> ключей, хешированных в ячейку <tex>j</tex>.  | Благодаря такому подходу, так как ни в одной из вторичных таблиц нет ни одной коллизии, время поиска в худшем случае будет равно константе. Но для того, чтобы гарантировать отсутствие коллизий на втором уровне, требуется, чтобы размер <tex>m_j</tex> хеш-таблицы <tex>S_j</tex> был равен квадрату числа <tex>n_j</tex> ключей, хешированных в ячейку <tex>j</tex>.  | ||
| + | |||
== Метод №1 ==  | == Метод №1 ==  | ||
Будем использовать <tex>O(n^2)</tex> памяти.  | Будем использовать <tex>O(n^2)</tex> памяти.  | ||
Версия 09:40, 13 июня 2013
| Определение: | 
| Идеальная хеш-функция — хеш-функция, которая без коллизий отображает различные элементы из множества объектов на множество ключей за времени в худшем случае. | 
Содержание
Практический смысл
Задача идеального хеширования возникает тогда, когда возникает необходимость проверять наличие элемента (скажем, слова из словаря) за гарантировано константное время. При этом подразумевается, что набор данных в таблице статичен либо изменяется очень редко.
Основная идея
Будем использовать двухуровневую схему хеширования с универсальным хешированием на каждом уровне.
Первый уровень
Используется тот же принцип, что и в случае хеширования с цепочками: ключей хешируются в ячеек с использованием хеш-функции , выбранной из семейства универсальных хеш-функций. Сама хеш-функция будет иметь вид .
Второй уровень
На данном уровне будет использовать вторичную хеш-таблицу  со своей функций .  будет хранить все ключи, хешированные в ячейку . Соответственно, хеш-функция будет вида .
Благодаря такому подходу, так как ни в одной из вторичных таблиц нет ни одной коллизии, время поиска в худшем случае будет равно константе. Но для того, чтобы гарантировать отсутствие коллизий на втором уровне, требуется, чтобы размер хеш-таблицы был равен квадрату числа ключей, хешированных в ячейку .
Метод №1
Будем использовать памяти.
| Теорема: | 
Если  ключей сохраняются в хеш-таблице размером  c использованием хеш-функции , случайно выбранный из  универсального множества хеш-функций, то вероятность возникновения коллизий не превышает .  | 
| Доказательство: | 
| 
 Всего имеется пар ключей, которые могут вызвать коллизию. Если хеш-функция выбрана случайным образом из универсального семейства хеш-функций , то для каждой пары вероятность возникновения коллизии равна . Пусть — случайная величина, которая подсчитывает количество коллизий. Если , то математическое ожидание числа коллизий равно  | 
Это является очень хорошим результатом, если хотя бы вспомнить на примере парадокса дней рождения о том, что вероятность коллизий растет крайне быстро по сравнению с размером хеш-таблицы.
Метод №2
Будем использовать памяти.
| Теорема: | 
Если мы сохраняем  ключей в хеш-таблице в хеш-таблице размеров  c использованием хеш-функции , выбираемой случайным образом из универсального множества хеш-функций, то , где  — количество ключей, хешированных в ячейку .  | 
| Доказательство: | 
| 
 
 Первый переход в равенстве мы совершили благодаря формуле . Далее мы воспользовались свойствами математического ожидания, в частности - линейности. Очевидно, что - просто общее количество коллизий, поэтому по свойству универсального хеширования математическое ожидание значения этой суммы не превышает А так как , то , ч.т.д. | 
Теперь выведем 2 следствия из этой теоремы.
| Теорема: | 
Если мы сохраняем  ключей в хеш-таблице размером  с использованием хеш-функции , выбираемой случайным образом из  универсального множества хеш-функций, и устанавливаем размер каждой вторичной хеш-таблицы равным  , то математическое ожидание количества необходимой для вторичных хеш-таблиц в схеме идеального хеширования памяти не превышает .  | 
| Доказательство: | 
| 
 Поскольку для , согласно предыдущей теореме: , ч.т.д. | 
| Теорема: | 
Если мы сохраняем  ключей в хеш-таблице размером  с использованием хеш-функции , выбираемой случайным образом из  универсального множества хеш-функций, и устанавливаем размер каждой вторичной хеш-таблицы равным  , то вероятность того, что общее количество необходимой для вторичных хеш-таблиц памяти не менее , меньше чем .  | 
| Доказательство: | 
| 
 Применим неравенство Маркова Пусть и . Тогда , ч.т.д. | 
См. также
Ссылки
- Т. Кормен. «Алгоритмы. Построение и анализ» второе издание, Глава 11.5, стр. 308
 - Д.Э. Кнут. «Искусство программирования: Сортировка и поиск" Том 3, Глава 6.4, стр. 563
 - Perfect hash function — Wikipedia
 - Universal and Perfect Hashing
 - Универсальное хэширование. Идеальное хэширование