Алгебра — различия между версиями
(→Умножение линейных операторов) |
(→Умножение линейных операторов) |
||
Строка 11: | Строка 11: | ||
{{Теорема | {{Теорема | ||
− | |statement=Пусть <tex>\{e_i\}_{i=1}^n</tex> - базис <tex>X</tex>, <tex>\{h_k\}_{k=1}^m</tex> - базис <tex>Y</tex>, <tex>\{l_s\}_{s=1}^p</tex> - базис <tex>Z</tex> и пусть <tex> A_{[m \times n]} = ||\alpha_k^i||</tex> - матрица <tex>\mathcal{A}</tex>, <tex> B_{[p \times m]} = ||\beta_k^i||</tex> - матрица <tex>\mathcal{B}</tex>, <tex>C_{[p \times n]} = ||\gamma_k^i||</tex> - матрица <tex>l< | + | |statement=Пусть <tex>\{e_i\}_{i=1}^n</tex> - базис <tex>X</tex>, <tex>\{h_k\}_{k=1}^m</tex> - базис <tex>Y</tex>, <tex>\{l_s\}_{s=1}^p</tex> - базис <tex>Z</tex> и пусть <tex> A_{[m \times n]} = ||\alpha_k^i||</tex> - матрица <tex>\mathcal{A}</tex>, <tex> B_{[p \times m]} = ||\beta_k^i||</tex> - матрица <tex>\mathcal{B}</tex>, <tex>C_{[p \times n]} = ||\gamma_k^i||</tex> - матрица <tex>l</tex>, где <tex>l = \mathcal{B} \cdot \mathcal{A}</tex>.<br> |
Тогда <tex>C = B \cdot A</tex>. | Тогда <tex>C = B \cdot A</tex>. | ||
Версия 13:11, 14 июня 2013
Умножение линейных операторов
Определение: |
Пусть Тогда отображение называется называется произведением линейных операторов и , если | и , причём , и .
Лемма: |
Если , то - линейный оператор, т.е. |
Доказательство: |
УПРАЖНЕНИЕ |
Теорема: |
Пусть - базис , - базис , - базис и пусть - матрица , - матрица , - матрица , где .Тогда . |
Доказательство: |
УПРАЖНЕНИЕ |