Алгоритм Балабана — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(add ''in creating'' lable)
(Литература)
Строка 15: Строка 15:
 
==Литература==
 
==Литература==
  
[http://www.graphicon.ru/proceedings/2010/conference/RU/Se4/021.pdf ''К построению эффективного решения задачи пересечения отрезков'']<br>
+
[http://www.graphicon.ru/proceedings/2010/conference/RU/Se4/021.pdf ''Т.Вознюк, В.Терещенко {{---}} К построению эффективного решения задачи пересечения отрезков'']<br>
 +
[http://booksshare.net/books/math/preparata-f/1989/files/vichgeometr.pdf ''Ф.Препарата, М.Шеймос {{---}} Вычислительная геометрия'']<br>
  
 
[[Категория: Вычислительная геометрия]]
 
[[Категория: Вычислительная геометрия]]

Версия 14:09, 26 сентября 2013

Эта статья находится в разработке!

Алгоритм Балабана — детерминированный алгоритм, позволяющий по множеству отрезков на плоскости получить множество точек, в которых эти отрезки пересекаются

Введение

Методы поиска пересечений отрезков разделяются на детерминированные и недетерминированные. Тривиальный детерминированный алгоритм имеет временную сложность [math]O(n^2)[/math] и суть его заключается в проверке попарного пересечения отрезков. Сложнее, но эффективнее алгоритм Бентли-Отмена [1] с оценкой сложности [math]O((n + k)\ log(n)+k)[/math], в основе которого лежит метод заметающей прямой. Оптимальный детерминированный алгоритм был предложен Балабаном [2] с временной оценкой сложности [math]O(n\ log(n) + k)[/math] и [math]O(n)[/math] памяти.

Алгоритм

Примечания

Литература

Т.Вознюк, В.Терещенко — К построению эффективного решения задачи пересечения отрезков
Ф.Препарата, М.Шеймос — Вычислительная геометрия