Алгоритм Балабана — различия между версиями
(→Основы алгоритма) |
(→Основы алгоритма) |
||
| Строка 124: | Строка 124: | ||
Основная задача нашего алгоритма, это рекурсивная функция <tex>TreeSearch</tex>. Соединим каждый вызов функции с узлом некоего двоичного дерева (далее ''рекурсивное дерево''). Соответствующим узлом отметим все значения, множества и параметры вызова. Обозначим множество внутренних вершин за <tex>V</tex>. | Основная задача нашего алгоритма, это рекурсивная функция <tex>TreeSearch</tex>. Соединим каждый вызов функции с узлом некоего двоичного дерева (далее ''рекурсивное дерево''). Соответствующим узлом отметим все значения, множества и параметры вызова. Обозначим множество внутренних вершин за <tex>V</tex>. | ||
| − | <tex>IntersectingPairs( | + | <tex>IntersectingPairs(S_0):</tex> |
Отсортируем <tex>2 \cdot N</tex> вершин по координатам и | Отсортируем <tex>2 \cdot N</tex> вершин по координатам и | ||
найдем <tex>p_i, s(i), i = 1,...,2 \cdot N;\ S_r \leftarrow S_0</tex> | найдем <tex>p_i, s(i), i = 1,...,2 \cdot N;\ S_r \leftarrow S_0</tex> | ||
<tex>TreeSearch(S_r, 1, 2 \cdot N)</tex>; | <tex>TreeSearch(S_r, 1, 2 \cdot N)</tex>; | ||
| − | <tex>TreeSearch( | + | <tex>TreeSearch(S_v, a, b):</tex> |
<tex>\{</tex> | <tex>\{</tex> | ||
'''if''' <tex>b - a = 1</tex> '''then''' | '''if''' <tex>b - a = 1</tex> '''then''' | ||
<tex>\{</tex> | <tex>\{</tex> | ||
| − | <tex>L \leftarrow</tex> отсортируем <tex>S_v</tex> по отношению <tex>< | + | <tex>L \leftarrow</tex> отсортируем <tex>S_v</tex> по отношению <tex><_a</tex>; |
<tex>SearchInStrip_{a, b}(L_v, R_v)</tex>; | <tex>SearchInStrip_{a, b}(L_v, R_v)</tex>; | ||
'''return'''; | '''return'''; | ||
| Строка 151: | Строка 151: | ||
Отсюда и дальше <tex>ls(v)</tex>, <tex>rs(v)</tex> и <tex>ft(v)</tex> означают, соответственно, левого сына, правого сына, и отцовскую вершину узла <tex>v</tex>. | Отсюда и дальше <tex>ls(v)</tex>, <tex>rs(v)</tex> и <tex>ft(v)</tex> означают, соответственно, левого сына, правого сына, и отцовскую вершину узла <tex>v</tex>. | ||
| − | Наша задача показать, что все операции с узлом <tex>v</tex> происходят за <tex>O(|S_v | + | Наша задача показать, что все операции с узлом <tex>v</tex> происходят за <tex>O(|S_v| + |Int(D_v, S_v')| + (a_v - b_v)logN)</tex>, для этого возьмем во внимание, что <tex>\sum_v |S_v| = O(N \cdot logN + K)</tex> (очевидно, что <tex>\sum_v |Int(D_v, S_v')| \le K</tex>). |
Функция <tex>TreeSearch</tex> похожа на функцию <tex>SearchInStrip</tex>. Основная разница заключается в том, что <tex>SearchInStrip</tex> вызывает себя без изменения полосы, когда <tex>TreeSearch</tex> делит полосу на две части, после чего рекурсивно вызывает себя для них. Другое отличие заключается в том, что множество <tex>S_v</tex> не упорядочено так же, как <tex>L</tex>. В результате мы не можем напрямую использовать функцию <tex>Split</tex> для эффективного деления <tex>S_v</tex>. | Функция <tex>TreeSearch</tex> похожа на функцию <tex>SearchInStrip</tex>. Основная разница заключается в том, что <tex>SearchInStrip</tex> вызывает себя без изменения полосы, когда <tex>TreeSearch</tex> делит полосу на две части, после чего рекурсивно вызывает себя для них. Другое отличие заключается в том, что множество <tex>S_v</tex> не упорядочено так же, как <tex>L</tex>. В результате мы не можем напрямую использовать функцию <tex>Split</tex> для эффективного деления <tex>S_v</tex>. | ||
| Строка 160: | Строка 160: | ||
Теперь мы можем вызвать функцию <tex>Split</tex> для множества <tex>L_v</tex> и построить <tex>Q_v</tex> за <tex>O(|L_v|) = O(|S_v|)</tex> времени. Но мы натыкаемся на новую проблему: передавая множества <tex>L_v</tex>, <tex>I_v</tex> и <tex>R_v</tex>, необходимо найти соответствующие множества сыновей узла <tex>v</tex>. | Теперь мы можем вызвать функцию <tex>Split</tex> для множества <tex>L_v</tex> и построить <tex>Q_v</tex> за <tex>O(|L_v|) = O(|S_v|)</tex> времени. Но мы натыкаемся на новую проблему: передавая множества <tex>L_v</tex>, <tex>I_v</tex> и <tex>R_v</tex>, необходимо найти соответствующие множества сыновей узла <tex>v</tex>. | ||
| − | Неупорядоченные множества <tex>I_{ls(v)}</tex> и <tex>I_{rs(v)}</tex> строятся легко. Множество <tex>L_{ls(v)}</tex> будет найдено вызовом функции <tex>Split_{a, b}(L_v, Q_v, L_{ls(v)})</tex> для | + | Неупорядоченные множества <tex>I_{ls(v)}</tex> и <tex>I_{rs(v)}</tex> строятся легко. Множество <tex>L_{ls(v)}</tex> будет найдено вызовом функции <tex>Split_{a, b}(L_v, Q_v, L_{ls(v)})</tex> для нахождения <tex>Int(D_v, S_v')</tex> в функции <tex>TreeSearch</tex>. Множество <tex>L_{rs(v)}</tex> получается из <tex>R_{ls(v)}</tex> за линейное время вставкой (если <tex>p_c</tex> левая вершина отрезка) или удалением (если <tex>p_c</tex> правая вершина отрезка) отрезка <tex>s(c)</tex>. Но как получить <tex>R_{ls(v)}</tex> из <tex>L_v</tex>, <tex>R_v</tex> и <tex>I_v</tex> без сортировки? |
| − | Для листьев мы сделаем проверку вначале, и получим <tex>R_v</tex> из <tex>L_v</tex>. Пусть <tex>L_v</tex> и <tex>I_v</tex> известны, и все сыновья узла <tex>v</tex> - листья. Для начала запустим функцию <tex>Split(L_v, Q_v, L_{ls(v)})</tex> и найдем <tex>Q_v</tex> и <tex>L_{ls(v)}</tex>. Теперь мы должны найти <tex>Int(D_s, S_v') = Int(D_v, L_{ls(v)}) \cup Int(D_v, I_v) \cup Int(D_v, R_{rs(v)})</tex>, но мы не знаем <tex>R_{rs(v)}</tex>, | + | Для листьев мы сделаем проверку вначале, и получим <tex>R_v</tex> из <tex>L_v</tex>. Пусть <tex>L_v</tex> и <tex>I_v</tex> известны, и все сыновья узла <tex>v</tex> - листья. Для начала запустим функцию <tex>Split(L_v, Q_v, L_{ls(v)})</tex> и найдем <tex>Q_v</tex> и <tex>L_{ls(v)}</tex>. Теперь мы должны найти <tex>Int(D_s, S_v') = Int(D_v, L_{ls(v)}) \cup Int(D_v, I_v) \cup Int(D_v, R_{rs(v)})</tex>, но мы не знаем <tex>R_{rs(v)}</tex> и, соответственно, можем найти только <tex>Int(D_v, L_{ls(v)}) \cup Int(D_v, I_v)</tex>. Применим <tex>SearchInStrip</tex> к множеству <tex>L_{ls(v)}</tex> и получим <tex>R_{ls(v)}</tex>. Множество <tex>L_{rs(v)}</tex> получается из <tex>R_{ls(v)}</tex> вставкой или удалением отрезка <tex>s(c)</tex>. Применим <tex>SearchInStrip</tex> к <tex>L_{rs(v)}</tex> и найдем <tex>R_{rs(v)}</tex>. Теперь можем продолжить вычисление <tex>Int(D_v, R_{rs(v)})</tex> и получим <tex>R_v</tex> слиянием <tex>Q_v</tex> и <tex>R_{rs(v)}</tex>. |
Конечная функция будет выглядеть так: | Конечная функция будет выглядеть так: | ||
| Строка 184: | Строка 184: | ||
Найдем <tex>Int(D_v, L_{ls(v)})</tex>; | Найдем <tex>Int(D_v, L_{ls(v)})</tex>; | ||
<tex>c \leftarrow \lfloor (a + b) / 2 \rfloor</tex>; | <tex>c \leftarrow \lfloor (a + b) / 2 \rfloor</tex>; | ||
| − | + | Разделяем отрезки из <tex>I_v</tex> | |
внутренние для полосы <tex>\langle a, c \rangle</tex> во множество <tex>I_{ls(v)}</tex> | внутренние для полосы <tex>\langle a, c \rangle</tex> во множество <tex>I_{ls(v)}</tex> | ||
внутренние для полосы <tex>\langle c, b \rangle</tex> во множество <tex>I_{rs(v)}</tex> | внутренние для полосы <tex>\langle c, b \rangle</tex> во множество <tex>I_{rs(v)}</tex> | ||
| Строка 200: | Строка 200: | ||
<tex>\}</tex> | <tex>\}</tex> | ||
| − | Заметим, что нахождение <tex>Int(D_v, R_{rs(v)})</tex> надо делать аккуратно, так как множества <tex>R_{rs(v)}</tex> и <tex>L_{ls(v)}</tex> могут иметь одни и те же отрезки (которые '''пересекают''' <tex>\langle a, b \rangle</tex>). Мы нашли их пересечения с <tex>D_v</tex> | + | Заметим, что нахождение <tex>Int(D_v, R_{rs(v)})</tex> надо делать аккуратно, так как множества <tex>R_{rs(v)}</tex> и <tex>L_{ls(v)}</tex> могут иметь одни и те же отрезки (которые '''пересекают''' <tex>\langle a, b \rangle</tex>). Мы нашли их пересечения с <tex>D_v</tex> при поиске <tex>Int(D_v, L_{ls(v)})</tex>, и не должны вывести эти пересечения снова. |
Для начала рассчитаем место, необходимое для выполнения алгоритма. Алгоритм использует рекурсивную функцию <tex>TreeSearch</tex>. Последовательность вызовов функции может занять память. Эта последовательность может быть представлена как путь корня рекурсивного дерева, до узла. Назовем этот узел, и соответствующий вызов ''активным''. Активный вызов занимает <tex>O(N)</tex> памяти, каждый его "предок" занимает <tex>O(|I_v| + |Q_v|)</tex> памяти, а остальные структуры используют <tex>O(N)</tex>. Очевидно, что любой путь <tex>pt</tex> от корня рекурсивного дерева до какого-то узла <tex>\sum_{v \in pt}(|I_v + |Q_v|) = O(N)(|I_v| \le b_v - a_v \le \lceil (b_{ft(v)} - a_{ft(v)})/2 \rceil)</tex>. | Для начала рассчитаем место, необходимое для выполнения алгоритма. Алгоритм использует рекурсивную функцию <tex>TreeSearch</tex>. Последовательность вызовов функции может занять память. Эта последовательность может быть представлена как путь корня рекурсивного дерева, до узла. Назовем этот узел, и соответствующий вызов ''активным''. Активный вызов занимает <tex>O(N)</tex> памяти, каждый его "предок" занимает <tex>O(|I_v| + |Q_v|)</tex> памяти, а остальные структуры используют <tex>O(N)</tex>. Очевидно, что любой путь <tex>pt</tex> от корня рекурсивного дерева до какого-то узла <tex>\sum_{v \in pt}(|I_v + |Q_v|) = O(N)(|I_v| \le b_v - a_v \le \lceil (b_{ft(v)} - a_{ft(v)})/2 \rceil)</tex>. | ||
Версия 17:26, 15 ноября 2013
Алгоритм Балабана — детерминированный алгоритм, позволяющий по множеству отрезков на плоскости получить множество точек, в которых эти отрезки пересекаются.
Содержание
Введение
Решение задачи по поиску множества пересечений отрезков является одной из главных задач вычислительной геометрии. Тривиальный детерминированный алгоритм имеет временную сложность , и его суть заключается в проверке попарного пересечения отрезков. Сложнее, но эффективнее алгоритм Бентли-Оттмана [1] с оценкой сложности , в основе которого лежит метод заметающей прямой. Алгоритм, предложенный Чазелле и Едельсбруннером [2], имеет лучшую оценку , но в отличие от предыдущих методов требует квадратичной памяти. Оптимальный детерминированный алгоритм был предложен Балабаном [3] с временной оценкой сложности и памяти, где К - число пересекающихся отрезков. При количестве отрезков от 2000, и большому количеству пересечений целесообразно использовать алгоритм Балабана. Однако в результате громоздкости и высокой сложности реализации алгоритма, в большинстве практических задач используется алгоритм заметающей прямой Бентли-Оттмана.
Основные понятия
Введем некоторые обозначения. Пусть - множество всех точек пересечения отрезков из множества , а - количество таких пересечений ;
Через обозначим вертикальную полосу, которая ограничена прямыми и , а через — отрезок с вершинами в точках с абсциссами и .
Рассмотрим взаимное расположение вертикальной полосы и отрезка .
| Определение: |
| Будем говорить, что отрезок , с вершинами в точках с абсциссами и :
- содержит(span) полосу , если ; |
| Определение: |
| Два отрезка и называются пересекающимися внутри полосы , если их точка пересечения лежит в пределах этой полосы. Для двух множеств отрезков и определим множество как . |
Обозначения и будут использоваться для описания подмножеств и , состоящих из пересекающихся пар отрезков в пределах полосы . Далее скобки используются для определения неупорядоченных множеств, а скобки используются для определения упорядоченных множеств.
Введем отношение порядка на множестве отрезков если оба отрезка пересекают вертикальную линию и точка пересечения этой прямой с отрезком лежит ниже точки пересечения с .
− любой отрезок из содержит полосу ;
− нет пересечений отрезков внутри лестницы;
− упорядочена по отношению .
| Определение: |
| Будем называть лестницу полностью соотносимой множеству отрезков , если каждый отрезок из либо не пересекает полосу , либо пересекает хотя бы одну из ступенек из множества . |
| Лемма: |
Пусть лестница полностью соотносима множеству отрезков , где состоит из отрезков, пересекающих полосу , тогда , где это число вершин отрезков из , находящихся в пределах полосы . |
| Определение: |
| Если точка отрезка лежит между ступеньками и , тогда число называется местоположением на лестнице и обозначается как |
| Утверждение: |
Имея лестницу и множество отрезков , множество можно найти за время . Однако, если упорядочено отношением , где , тогда можно найти за время . |
Алгоритм
Введем несколько дополнительных функций, чтобы упростить основной алгоритм:
Split
Функция разделяет входное множество отрезков , пересекающих некоторую полосу , на подмножества и так, что лестница полностью соотносима множеству отрезков .
Пусть , где for do if отрезок не пересекает последний отрезок из внутри полосы и при этом содержит её then добавить в конец else добавить в конец
Эта функция работает за времени.
Search In Strip
Зная мы можем найти и используя следующую рекурсивную функцию:
if then return Найдем
Здесь, это функция объединения множеств и , упорядоченных по отношению . Время выполнения эквивалентно сумме времён каждого её запуска. Очевидно, что время работы -той функции, будет равно , где это соответствующие наборы .
Учитывая лемму, заключаем, что функция работает за .
Предположим, что все отрезки лежат в полосе . Таким образом в самом начале у нас есть пара . Что же дальше происходит: множество распадается в подмножества и , после чего лестница становится полностью соотносимой множеству . Необходимо найти пересечения отрезков из и , затем, все пересечения в . Чтобы найти пересечения отрезков в , мы режем полосу и множество по вертикале на полосы , и множества , соответственно, где является медианой вершин отрезков между и . Затем мы рекурсивно вызываем функцию к парам и . Ключевым является тот факт, что согласно лемме , таким образом, число дополнительных отрезков, появляющихся после разрезаний пропорционально числу найденных пересечений.
Основы алгоритма
Давайте разберемся с алгоритмом более подробно:
Не умаляя общности, предположим, что все пересечения и вершины отрезков имеют разные абсциссы (в конечном счете, их можно будет отсортировать введением дополнительных свойств). Будем рассматривать целые координаты на промежутке . Пусть и будут координатами вершин -того отрезка.
Основная задача нашего алгоритма, это рекурсивная функция . Соединим каждый вызов функции с узлом некоего двоичного дерева (далее рекурсивное дерево). Соответствующим узлом отметим все значения, множества и параметры вызова. Обозначим множество внутренних вершин за .
Отсортируем вершин по координатам и найдем ;
if then отсортируем по отношению ; ; return; Разделим на и так, что лестница будет полностью соотносима множеству ; Найдем ; ; Разделим отрезки из на пересекающих полосу и полосу ; ; ;
Отсюда и дальше , и означают, соответственно, левого сына, правого сына, и отцовскую вершину узла . Наша задача показать, что все операции с узлом происходят за , для этого возьмем во внимание, что (очевидно, что ).
Функция похожа на функцию . Основная разница заключается в том, что вызывает себя без изменения полосы, когда делит полосу на две части, после чего рекурсивно вызывает себя для них. Другое отличие заключается в том, что множество не упорядочено так же, как . В результате мы не можем напрямую использовать функцию для эффективного деления .
Чтобы решить эту проблему, представим как объединение трех множеств: множества упорядоченного по отношению , неупорядоченного множества , и множества упорядоченного по отношению . Расположим отрезки из , пересекающие границу во множество , отрезки пересекающие во множество , и внутренние отрезки во множество (пример на рисунке справа).
Теперь мы можем вызвать функцию для множества и построить за времени. Но мы натыкаемся на новую проблему: передавая множества , и , необходимо найти соответствующие множества сыновей узла .
Неупорядоченные множества и строятся легко. Множество будет найдено вызовом функции для нахождения в функции . Множество получается из за линейное время вставкой (если левая вершина отрезка) или удалением (если правая вершина отрезка) отрезка . Но как получить из , и без сортировки?
Для листьев мы сделаем проверку вначале, и получим из . Пусть и известны, и все сыновья узла - листья. Для начала запустим функцию и найдем и . Теперь мы должны найти , но мы не знаем и, соответственно, можем найти только . Применим к множеству и получим . Множество получается из вставкой или удалением отрезка . Применим к и найдем . Теперь можем продолжить вычисление и получим слиянием и .
Конечная функция будет выглядеть так:
Отсортируем концов отрезков по абсциссе и найдем , где ; ; ; ;
if then ; return; ; ; Найдем ; ; Разделяем отрезки из внутренние для полосы во множество внутренние для полосы во множество ; if левый конец отрезка then вставить в else удалить из ; Найдем ; for do Найдем используя двоичный поиск; Найдем используя значения, полученные шагом выше; ;
Заметим, что нахождение надо делать аккуратно, так как множества и могут иметь одни и те же отрезки (которые пересекают ). Мы нашли их пересечения с при поиске , и не должны вывести эти пересечения снова.
Для начала рассчитаем место, необходимое для выполнения алгоритма. Алгоритм использует рекурсивную функцию . Последовательность вызовов функции может занять память. Эта последовательность может быть представлена как путь корня рекурсивного дерева, до узла. Назовем этот узел, и соответствующий вызов активным. Активный вызов занимает памяти, каждый его "предок" занимает памяти, а остальные структуры используют . Очевидно, что любой путь от корня рекурсивного дерева до какого-то узла .
В итоге для работы алгоритма требуется памяти.
Время работы
| Лемма (#2): |
. |
| Доказательство: |
| Утверждение напрямую вытекает из леммы (далее лемма №1) и очевидного факта, что для любого множества , количество концов отрезков, лежащих в полосе , меньше чем . |
| Теорема (#1): |
| Доказательство: |
| Утверждение напрямую вытекает из леммы №2 и следующего отношения . |
| Теорема (#2): |
| Доказательство: |
| Для всех узлов, кроме корня имеет место выражение , следовательно . |
Начальная сортировка и инициализация множеств и может быть произведена за времени. Время работы функции является суммой длительностей всех его вызовов. Каждый вызов от внешних узлов добавляет к этой сумме . Для внутренних же узлов, время требуемое для выполнения 10го шага алгоритма равно , а для остальных . Если мы все это сложим, то придем к выводу, что наш алгоритм работает за . Заметим, что его скорость можно увеличить до , если не будем учитывать время нахождения .
Соответственно в оптимальном алгоритме Балабана находится за .
Примечания
Литература
Т.Вознюк, В.Терещенко — К построению эффективного решения задачи пересечения отрезков
Ф.Препарата, М.Шеймос — Вычислительная геометрия