Задача о наибольшей общей возрастающей последовательности — различия между версиями
(→Решение за время O(N2)) |
(→Решение за время O(N2)) |
||
Строка 82: | Строка 82: | ||
best = 0 // значение динамики для "лучшего" элемента | best = 0 // значение динамики для "лучшего" элемента | ||
'''for''' j = 1...m | '''for''' j = 1...m | ||
− | d[i][j] = d[i-1][j] // НОВП на | + | d[i][j] = d[i-1][j] // НОВП на a[1..i-1] и b[1..j] (без элемента a[i]_ |
− | '''if''' a[i] == b[j] '''and''' d[i-1][j] < best + 1 // | + | '''if''' a[i] == b[j] '''and''' d[i-1][j] < best + 1 // используем a[i]-й элемент для увеличения НОВП |
d[i][j] = best + 1 | d[i][j] = best + 1 | ||
p[j] = best_ind | p[j] = best_ind |
Версия 18:20, 11 декабря 2013
Даны два массива:
и . Требуется найти их наибольшую общую возрастающую подпоследовательность (НОВП).Определение: |
Наибольшая общая возрастающая подпоследовательность (НОВП) (англ. longest common increasing subsequence - LCIS) массива | длины и массива длины — это последовательность такая, что , является подпоследовательностью и .
Содержание
Решение за время O(N4)
Построим следующую динамику:
- это длина наибольшей возрастающей подпоследовательности массивов и , последний элемент которой и . Будем заполнять сначала по увеличению , а при равенстве по увеличению . Ответом на задачу будет максимум из всех элементов (где , )Заполнять
будем следующим образом: на очередном шаге сравниваем элементы и :- Если , то (так как нет НОВП, оканчивающейся в разных элементах).
- Если , то эти элементы могут быть частью НОВП. Переберём, какие элементы стояли перед ними в массивах и . Заметим, что предыдущие значения уже известны, тогда очередное значение для всех и при условии, что
Для восстановления подпоследовательности можно хранить массив предков
массива - индекс предыдущего элемента НОВП, которая оканчивается в .vector<int> LCIS(vector<int> a, vector<int> b)
d = int[n][m] // динамика
prev = int[n] // массив предков
for i = 1...n
for j = 1...m
if a[i] == b[j]
d[i][j] = 1 // НОВП как минимум 1, состоит из одного элемента a[i] <-> b[j]
for k = 1...i-1
for l = 1...j-1
if a[k] == b[l] and a[k] < a[i] and d[i][j] < d[k][l] + 1
d[i][j] = d[k][l] + 1
prev[i] = k
// восстановление
b_i = 1 // ищем лучшую пару (b_i, b_j)
b_j = 1 // d[b_i][b_j]
max
for i = 1...n
for j = 1...m
if d[b_i][b_j] < d[i][j]
b_i = i
b_j = j
vector<int> answer
pos = b_i // проходим по массиву a, выписывая элементы НОВП
while pos != 0
answer.push(a[pos])
pos = prev[pos]
return answer
Решение за время O(N3)
Улучшим предыдущее решение. Пусть теперь
- динамика, в которой элемент по-прежнему последний представитель НОВП массива , а может не быть быть последним представителем массива :- Если , будем "протаскивать" последнее удачное сравнение в динамике: (понять это можно так: , поэтому не последний представитель НОВП из массива , а значит предыдущий элемент НОВП находится в префиксе , но уже посчитан).
- Если , то одним дополнительным циклом пробежим по и найдём предыдущий элемент НОВП, оканчивающейся в (он меньше ). Из подходящих элементов выберем тот, для которого - максимальна.
для всех
vector<int> LCIS(vector<int> a, vector<int> b)
d = int[n][m] // динамика
prev = int[n] // массив предков
for i = 1...n
for j = 1...m
if a[i] == b[j]
d[i][j] = 1 // НОВП как минимум 1, состоит из одного элемента a[i] <-> b[j]
for k = 1...i-1
if a[k] < a[i] and d[i][j] < d[k][j] + 1
d[i][j] = d[k][j] + 1
prev[i] = k
else
d[i][j] = d[i][j-1]
// восстановление
b_i = 1 // ищем лучший элемент d[b_i][m]
max
for i = 1...n
if d[b_i][m] < d[i][m]
b_i = i
vector<int> answer
pos = b_i // проходим по массиву a, выписывая элементы НОВП
while pos != 0
answer.push(a[pos])
pos = prev[pos]
return answer
Решение за время O(N2)
Пусть теперь
- это длина наибольшей общей возрастающей подпоследовательности префиксов и (элементы и могут не входить в НОВП). Вычислять будем по увеличению , а при равенстве - по увеличению . Заметим, что в предыдущем решении при каждом равенстве элементов и приходилось пробегать дополнительным циклом по массиву в поисках элемента, меньшего , для которого на префиксе и была наилучшей. А раз мы считаем сначала по увеличению , то можно считать фиксированным, а - переменным. Будем в дополнительной переменной хранить "лучший" элемент (и его индекс в массиве ) такой, что этот элемент строго меньше и значение динамики для него максимально. Фактически, это решение отличается от предыдущих только более "хитрой" реализацией.vector<int> LCIS(vector<int> a, vector<int> b)
d = int[n][m] // динамика
prev = int[n] // массив предков
for i = 1...n
best_ind = 0 // позиция "лучшего" элемента в массиве b
best = 0 // значение динамики для "лучшего" элемента
for j = 1...m
d[i][j] = d[i-1][j] // НОВП на a[1..i-1] и b[1..j] (без элемента a[i]_
if a[i] == b[j] and d[i-1][j] < best + 1 // используем a[i]-й элемент для увеличения НОВП
d[i][j] = best + 1
p[j] = best_ind
if a[i] > b[j] and d[i-1][j] > best // при следующем равенстве a[i] == b[j']
best = d[i-1][j] // в best будет храниться "лучший" элемент:
best_ind = j // b[best_ind] < b[j'] и d[i][best_ind] - максимальна
// восстановление (по массиву b)
b_j = 1 // ищем лучший элемент d[n][b_j]
max
for j = 1...m
if d[n][b_j] < d[n][j]
b_j = j
vector<int> answer
pos = b_j //проходим по массиву b, выписывая элементы НОВП
while pos != 0
answer.push(b[pos])
pos = prev[pos]
return answer
См. также
- Задача о наибольшей общей подпоследовательности
- Задача о наибольшей возрастающей подпоследовательности
Источники
- http://codeforces.ru/contest/10/problem/D Codeforces - Задача о наибольшей общей возрастающей подпоследовательности