Эйлеровость графов — различия между версиями
(→Эйлеров путь) |
(→Эйлеров цикл) |
||
Строка 5: | Строка 5: | ||
==Эйлеров цикл== | ==Эйлеров цикл== | ||
− | Цикл <math>p</math> <math>u_0 -> u_0u_1 -> u_1 -> u_1u_2 -> ...-> u_ku_0-> u_0</math> в графе <math>G = (V, E)</math | + | Цикл <math>p</math> <math>u_0 -> u_0u_1 -> u_1 -> u_1u_2 -> ...-> u_ku_0-> u_0</math> в графе <math>G = (V, E)</math> |
называется ''Эйлеровым'', если содержит все ребра <math>G</math>, причем каждое - только один раз. <br/> | называется ''Эйлеровым'', если содержит все ребра <math>G</math>, причем каждое - только один раз. <br/> | ||
Версия 05:05, 9 октября 2010
Содержание
Эйлеров путь
Путь
Эйлеров цикл
Цикл
Эквивалентно: Эйлеровым циклом является Эйлеров путь, являющийся циклом.
Эйлеров граф
Определение
Граф
называется Эйлеровым, если содержит Эйлеров цикл.Граф, содержащий Эйлеров путь, не являющийся циклом, называют полуэйлеровым.
Критерий Эйлеровости
Неориентированный граф
Теорема: |
Неориентированный почти связный[1] граф является Эйлеровым тогда и только тогда, когда не содержит вершин нечетной степени. |
Доказательство: |
Достаточность:
Рассмотрим вершину |
Следствие
Неориентированный связный граф является полуэйлеровым тогда и только тогда, когда содержит ровно две вершины нечетной степени.
Ориентированный граф
Теорема: |
Ориентированный граф является Эйлеровым тогда и только тогда, входная степень любой вершины равна ее выходной степени. |
Доказательство: |
Аналогично неориентированному графу. |
Следствие
Ориентированный граф является полуэйлеровым тогда и только тогда, когда содержит ровно одну вершину, входная степень которой
на единицу больше выходной, и ровно одну вершину, выходная степень которой на единицу больше входной.
Примечания
- ↑ Граф назовем почти связным, если все его компоненты связности, кроме, быть может, одной, имеют размер 1.