Теорема Татта о существовании полного паросочетания — различия между версиями
(→Определения) |
(→Теорема Татта) |
||
Строка 27: | Строка 27: | ||
{{Теорема | {{Теорема | ||
− | |statement=В графе <tex>G</tex> существует полное паросочетание <tex>\Leftrightarrow</tex> <tex>\forall S \subset | + | |statement=В графе <tex>\mathbb{G}</tex> существует полное паросочетание <tex>\Leftrightarrow</tex> <tex>\forall S \subset \mathbb{V_\mathbb{G}}</tex> выполнено условие: <tex>o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex> |
|proof = | |proof = | ||
− | <tex>\Rightarrow</tex> Рассмотрим <tex>M</tex> {{---}} полное паросочетание в графе <tex>G</tex> и множество вершин <tex>S \subset | + | <tex>\Rightarrow</tex> Рассмотрим <tex>M</tex> {{---}} полное паросочетание в графе <tex>\mathbb{G}</tex> и множество вершин <tex>S \subset \mathbb{V_\mathbb{G}}</tex>. |
− | Одна из вершин каждой нечетной компоненты связности графа <tex> G \setminus S</tex> соединена ребром паросочетания <tex>M</tex> с какой-то вершиной из <tex>S</tex>. Иначе мы не сможем покрыть паросочетанием все вершины этой компоненты связности и получим противоречие с тем, что полное паросочетание существует по условию теоремы. Таким образом, получаем, что <tex>o(G \setminus S) \leqslant \left\vert S \right\vert</tex>. | + | Одна из вершин каждой нечетной компоненты связности графа <tex> \mathbb{G} \setminus S</tex> соединена ребром паросочетания <tex>M</tex> с какой-то вершиной из <tex>S</tex>. Иначе мы не сможем покрыть паросочетанием все вершины этой компоненты связности и получим противоречие с тем, что полное паросочетание существует по условию теоремы. Таким образом, получаем, что <tex>o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex>. |
− | <tex>\Leftarrow</tex> Пусть для графа <tex>G</tex> выполнено, что <tex>o(G \setminus S) \leqslant \left\vert S \right\vert</tex>, но полного паросочетания в этом графе не существует. | + | <tex>\Leftarrow</tex> Пусть для графа <tex>\mathbb{G}</tex> выполнено, что <tex>o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex>, но полного паросочетания в этом графе не существует. |
− | Рассмотрим граф <tex>G'</tex> и множество вершин <tex>U</tex> | + | Рассмотрим граф <tex>\mathbb{G'}</tex> и множество вершин <tex>U</tex> (из леммы). Так как число нечетных компонент не увеличивается при добавлении новых ребер, то <tex>\forall S \subset \mathbb{V_\mathbb{G}}</tex> выполнено, что <tex>o(\mathbb{G'} \setminus S) \leqslant o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex>. По лемме, доказанной выше: <tex>\mathbb{G'} \setminus U</tex> {{---}} объединение несвязных полных графов. |
− | Очевидно, что в каждой четной компоненте связности графа <tex>G' \setminus U</tex> мы можем построить полное паросочетание. В каждой нечетной компоненте этого графа построим паросочетание, которое покрывает все вершины кроме одной, оставшуюся непокрытой вершину, соединим с какой-то вершиной множества <tex>U</tex>. При этом мы будем использовать различные вершины из <tex>U</tex>, это возможно, так как <tex>o(G' \setminus U) \leqslant \left\vert U \right\vert</tex>. | + | Очевидно, что в каждой четной компоненте связности графа <tex>\mathbb{G'} \setminus U</tex> мы можем построить полное паросочетание. В каждой нечетной компоненте этого графа построим паросочетание, которое покрывает все вершины кроме одной, оставшуюся непокрытой вершину, соединим с какой-то вершиной множества <tex>U</tex>. При этом мы будем использовать различные вершины из <tex>U</tex>, это возможно, так как <tex>o(G' \setminus U) \leqslant \left\vert U \right\vert</tex>. Если все вершины множества <tex>U</tex> оказались покрытыми, то мы получили полное паросочетание в графе <tex>\mathbb{G'}</tex>. Противоречие, так как по построению в <tex>\mathbb{G'}</tex> нет полного паросочетания. |
− | Таким образом, получили в <tex>G'</tex> полное паросочетание, что противоречит тому, как мы задали этот граф изначально. Значит, предположение не верно и в <tex>G</tex> существует полное паросочетание. | + | Значит, в <tex>U</tex> осталось какое-то количество непокрытых вершин, при этом их четное число, потому что число вершин в <tex>\mathbb{G'}</tex> четно, так как <tex>o(\mathbb{G'} \setminus \varnothing) \leqslant \left\vert \varnothing \right\vert = 0</tex> и уже покрыто паросочетанием четное число вершин. Так как в множество <tex>U</tex> входят вершины, которые в <tex>\mathbb{G'}</tex> смежны со всеми остальными, то мы сможем разбить оставшиеся вершины на пары и покрыть их паросочетанием. |
+ | |||
+ | Таким образом, получили в <tex>\mathbb{G'}</tex> полное паросочетание, что противоречит тому, как мы задали этот граф изначально. Значит, предположение не верно, и в <tex>\mathbb{G}</tex> существует полное паросочетание. | ||
}} | }} |
Версия 20:21, 16 декабря 2013
Определение: |
Нечетная компонента связности графа | — компонента связности, содержащая нечетное число вершин.
Определение: |
— число нечетных компонент связности в графе . |
Определение: |
Множество Татта графа | — множество , для которого выполнено условие:
Критерий Татта
Рассмотрим
— надграф , в нет полного паросочетания, но оно появляется при добавлении любого ребра, при этомПусть
.Очевидно, что
, потому что — не полный граф.Лемма: |
— объединение несвязных полных графов. |
Доказательство: |
Пусть это не так. Получили противоречие. |
Теорема Татта
Теорема: |
В графе существует полное паросочетание выполнено условие: |
Доказательство: |
Рассмотрим — полное паросочетание в графе и множество вершин . Одна из вершин каждой нечетной компоненты связности графа соединена ребром паросочетания с какой-то вершиной из . Иначе мы не сможем покрыть паросочетанием все вершины этой компоненты связности и получим противоречие с тем, что полное паросочетание существует по условию теоремы. Таким образом, получаем, что .Пусть для графа выполнено, что , но полного паросочетания в этом графе не существует. Рассмотрим граф и множество вершин (из леммы). Так как число нечетных компонент не увеличивается при добавлении новых ребер, то выполнено, что . По лемме, доказанной выше: — объединение несвязных полных графов.Очевидно, что в каждой четной компоненте связности графа мы можем построить полное паросочетание. В каждой нечетной компоненте этого графа построим паросочетание, которое покрывает все вершины кроме одной, оставшуюся непокрытой вершину, соединим с какой-то вершиной множества . При этом мы будем использовать различные вершины из , это возможно, так как . Если все вершины множества оказались покрытыми, то мы получили полное паросочетание в графе . Противоречие, так как по построению в нет полного паросочетания.Значит, в Таким образом, получили в осталось какое-то количество непокрытых вершин, при этом их четное число, потому что число вершин в четно, так как и уже покрыто паросочетанием четное число вершин. Так как в множество входят вершины, которые в смежны со всеми остальными, то мы сможем разбить оставшиеся вершины на пары и покрыть их паросочетанием. полное паросочетание, что противоречит тому, как мы задали этот граф изначально. Значит, предположение не верно, и в существует полное паросочетание. |