Теорема Татта о существовании полного паросочетания — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Определения)
(Теорема Татта)
Строка 27: Строка 27:
  
 
{{Теорема
 
{{Теорема
|statement=В графе <tex>G</tex> существует полное паросочетание <tex>\Leftrightarrow</tex> <tex>\forall S \subset V(G)</tex> выполнено условие: <tex>o(G \setminus S) \leqslant \left\vert S \right\vert</tex>  
+
|statement=В графе <tex>\mathbb{G}</tex> существует полное паросочетание <tex>\Leftrightarrow</tex> <tex>\forall S \subset \mathbb{V_\mathbb{G}}</tex> выполнено условие: <tex>o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex>  
 
|proof =
 
|proof =
<tex>\Rightarrow</tex> Рассмотрим <tex>M</tex> {{---}} полное паросочетание в графе <tex>G</tex> и множество вершин <tex>S \subset V(G)</tex>.
+
<tex>\Rightarrow</tex> Рассмотрим <tex>M</tex> {{---}} полное паросочетание в графе <tex>\mathbb{G}</tex> и множество вершин <tex>S \subset \mathbb{V_\mathbb{G}}</tex>.
  
Одна из вершин каждой нечетной компоненты связности графа <tex> G \setminus S</tex> соединена ребром паросочетания <tex>M</tex> с какой-то вершиной из <tex>S</tex>. Иначе мы не сможем покрыть паросочетанием все вершины этой компоненты связности и получим противоречие с тем, что полное паросочетание существует по условию теоремы. Таким образом, получаем, что <tex>o(G \setminus S) \leqslant \left\vert S \right\vert</tex>.
+
Одна из вершин каждой нечетной компоненты связности графа <tex> \mathbb{G} \setminus S</tex> соединена ребром паросочетания <tex>M</tex> с какой-то вершиной из <tex>S</tex>. Иначе мы не сможем покрыть паросочетанием все вершины этой компоненты связности и получим противоречие с тем, что полное паросочетание существует по условию теоремы. Таким образом, получаем, что <tex>o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex>.
  
<tex>\Leftarrow</tex> Пусть для графа <tex>G</tex> выполнено, что <tex>o(G \setminus S) \leqslant \left\vert S \right\vert</tex>, но полного паросочетания в этом графе не существует.
+
<tex>\Leftarrow</tex> Пусть для графа <tex>\mathbb{G}</tex> выполнено, что <tex>o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex>, но полного паросочетания в этом графе не существует.
  
Рассмотрим граф <tex>G'</tex> и множество вершин <tex>U</tex>, которые заданы так же как в лемме. Так как число нечетных компонент не увеличивается при добавлении новых ребер, то <tex>\forall S \subset V(G):</tex> <tex>o(G' \setminus S) \leqslant o(G \setminus S) \leqslant \left\vert S \right\vert</tex>. По лемме, доказанной выше: <tex>G' \setminus U</tex> {{---}} объединение несвязных полных графов.
+
Рассмотрим граф <tex>\mathbb{G'}</tex> и множество вершин <tex>U</tex> (из леммы). Так как число нечетных компонент не увеличивается при добавлении новых ребер, то <tex>\forall S \subset \mathbb{V_\mathbb{G}}</tex> выполнено, что <tex>o(\mathbb{G'} \setminus S) \leqslant o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex>. По лемме, доказанной выше: <tex>\mathbb{G'} \setminus U</tex> {{---}} объединение несвязных полных графов.
  
Очевидно, что в каждой четной компоненте связности графа <tex>G' \setminus U</tex> мы можем построить полное паросочетание. В каждой нечетной компоненте этого графа построим паросочетание, которое покрывает все вершины кроме одной, оставшуюся непокрытой вершину, соединим с какой-то вершиной множества <tex>U</tex>. При этом мы будем использовать различные вершины из <tex>U</tex>, это возможно, так как <tex>o(G' \setminus U) \leqslant \left\vert U \right\vert</tex>. Осталось какое-то количество непокрытых вершин множества U. Число вершин в <tex>G'</tex> четно, так как <tex>o(G' \setminus \varnothing) \leqslant \left\vert \varnothing \right\vert = 0</tex>, уже покрыто паросочетанием четное число вершин, значит, осталось так же четное число вершин. Так как в множество <tex>U</tex> входят вершины, которые в <tex>G'</tex> смежны со всеми остальными, то мы сможем разбить оставшиеся вершины на пары и покрыть их паросочетанием.
+
Очевидно, что в каждой четной компоненте связности графа <tex>\mathbb{G'} \setminus U</tex> мы можем построить полное паросочетание. В каждой нечетной компоненте этого графа построим паросочетание, которое покрывает все вершины кроме одной, оставшуюся непокрытой вершину, соединим с какой-то вершиной множества <tex>U</tex>. При этом мы будем использовать различные вершины из <tex>U</tex>, это возможно, так как <tex>o(G' \setminus U) \leqslant \left\vert U \right\vert</tex>. Если все вершины множества <tex>U</tex> оказались покрытыми, то мы получили полное паросочетание в графе <tex>\mathbb{G'}</tex>. Противоречие, так как по построению в <tex>\mathbb{G'}</tex> нет полного паросочетания.
  
Таким образом, получили в <tex>G'</tex> полное паросочетание, что противоречит тому, как мы задали этот граф изначально. Значит, предположение не верно и в <tex>G</tex> существует полное паросочетание.
+
Значит, в <tex>U</tex> осталось какое-то количество непокрытых вершин, при этом их четное число, потому что число вершин в <tex>\mathbb{G'}</tex> четно, так как <tex>o(\mathbb{G'} \setminus \varnothing) \leqslant \left\vert \varnothing \right\vert = 0</tex> и уже покрыто паросочетанием четное число вершин. Так как в множество <tex>U</tex> входят вершины, которые в <tex>\mathbb{G'}</tex> смежны со всеми остальными, то мы сможем разбить оставшиеся вершины на пары и покрыть их паросочетанием.
 +
 
 +
Таким образом, получили в <tex>\mathbb{G'}</tex> полное паросочетание, что противоречит тому, как мы задали этот граф изначально. Значит, предположение не верно, и в <tex>\mathbb{G}</tex> существует полное паросочетание.
 
    
 
    
 
}}
 
}}

Версия 20:21, 16 декабря 2013

Определение:
Нечетная компонента связности графа [math]\mathbb{G}[/math] — компонента связности, содержащая нечетное число вершин.


Определение:
[math]o(\mathbb{G})[/math] — число нечетных компонент связности в графе [math]\mathbb{G}[/math].


Определение:
Множество Татта графа [math]\mathbb{G}[/math] — множество [math]S \subset \mathbb{V_{G}}[/math], для которого выполнено условие: [math]o(\mathbb{G} \setminus S) \gt \left\vert S \right\vert[/math]


Критерий Татта

Рассмотрим [math]G'[/math] — надграф [math]G[/math], в [math]G'[/math] нет полного паросочетания, но оно появляется при добавлении любого ребра, при этом [math]\left\vert V(G) \right\vert = \left\vert V(G') \right\vert = n[/math]

Пусть [math] U = \{ v \in V: deg_{G'} (v) = n - 1 \}[/math].

Очевидно, что [math]\left\vert U \right\vert \ne n[/math], потому что [math]G'[/math] — не полный граф.

Лемма:
[math]G' \setminus U[/math] — объединение несвязных полных графов.
Доказательство:
[math]\triangleright[/math]

Пусть это не так.

Получили противоречие.
[math]\triangleleft[/math]

Теорема Татта

Теорема:
В графе [math]\mathbb{G}[/math] существует полное паросочетание [math]\Leftrightarrow[/math] [math]\forall S \subset \mathbb{V_\mathbb{G}}[/math] выполнено условие: [math]o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert[/math]
Доказательство:
[math]\triangleright[/math]

[math]\Rightarrow[/math] Рассмотрим [math]M[/math] — полное паросочетание в графе [math]\mathbb{G}[/math] и множество вершин [math]S \subset \mathbb{V_\mathbb{G}}[/math].

Одна из вершин каждой нечетной компоненты связности графа [math] \mathbb{G} \setminus S[/math] соединена ребром паросочетания [math]M[/math] с какой-то вершиной из [math]S[/math]. Иначе мы не сможем покрыть паросочетанием все вершины этой компоненты связности и получим противоречие с тем, что полное паросочетание существует по условию теоремы. Таким образом, получаем, что [math]o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert[/math].

[math]\Leftarrow[/math] Пусть для графа [math]\mathbb{G}[/math] выполнено, что [math]o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert[/math], но полного паросочетания в этом графе не существует.

Рассмотрим граф [math]\mathbb{G'}[/math] и множество вершин [math]U[/math] (из леммы). Так как число нечетных компонент не увеличивается при добавлении новых ребер, то [math]\forall S \subset \mathbb{V_\mathbb{G}}[/math] выполнено, что [math]o(\mathbb{G'} \setminus S) \leqslant o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert[/math]. По лемме, доказанной выше: [math]\mathbb{G'} \setminus U[/math] — объединение несвязных полных графов.

Очевидно, что в каждой четной компоненте связности графа [math]\mathbb{G'} \setminus U[/math] мы можем построить полное паросочетание. В каждой нечетной компоненте этого графа построим паросочетание, которое покрывает все вершины кроме одной, оставшуюся непокрытой вершину, соединим с какой-то вершиной множества [math]U[/math]. При этом мы будем использовать различные вершины из [math]U[/math], это возможно, так как [math]o(G' \setminus U) \leqslant \left\vert U \right\vert[/math]. Если все вершины множества [math]U[/math] оказались покрытыми, то мы получили полное паросочетание в графе [math]\mathbb{G'}[/math]. Противоречие, так как по построению в [math]\mathbb{G'}[/math] нет полного паросочетания.

Значит, в [math]U[/math] осталось какое-то количество непокрытых вершин, при этом их четное число, потому что число вершин в [math]\mathbb{G'}[/math] четно, так как [math]o(\mathbb{G'} \setminus \varnothing) \leqslant \left\vert \varnothing \right\vert = 0[/math] и уже покрыто паросочетанием четное число вершин. Так как в множество [math]U[/math] входят вершины, которые в [math]\mathbb{G'}[/math] смежны со всеми остальными, то мы сможем разбить оставшиеся вершины на пары и покрыть их паросочетанием.

Таким образом, получили в [math]\mathbb{G'}[/math] полное паросочетание, что противоречит тому, как мы задали этот граф изначально. Значит, предположение не верно, и в [math]\mathbb{G}[/math] существует полное паросочетание.
[math]\triangleleft[/math]