Теорема Татта о существовании полного паросочетания — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м (Критерий Татта)
Строка 27: Строка 27:
 
* Вершины <tex>x,y,z</tex> и <tex>t</tex> лежат в одном подграфе графа <tex>\mathbb{G'} \setminus U</tex>.
 
* Вершины <tex>x,y,z</tex> и <tex>t</tex> лежат в одном подграфе графа <tex>\mathbb{G'} \setminus U</tex>.
  
Построим граф <tex>H</tex>, такой что <tex>\mathbb{V_\mathbb{H}}=\mathbb{V_\mathbb{G'}}=\mathbb{V_\mathbb{G}}</tex> и <tex>\mathbb{E_\mathbb{H}}=M_1 \oplus M_2</tex>. Получим, что вершины <tex>x,y,z</tex> и <tex>t</tex> лежат на каком-то чередующемся цикле. В силу симметричности <tex>x</tex> и <tex>z</tex> можно считать, что вершины расположены в порядке <tex>tzxy</tex>. Тогда существует путь <tex>P_1=t..zx..y</tex> и полное паросочетание в нем, следовательно существует и путь <tex>P_2=t..zy..x</tex>, содержащий только ребра графа <tex>\mathbb{G'}</tex>. Тогда покроем путь <tex>x..yz</tex> ребрами паросочетания <tex>M_2</tex>, а путь <tex>t..z</tex> покрооем ребрами паросочетания <tex>M_1</tex>, при этом вершина z останется непокрытой. Получили полное паросочетание на вершинах выбранного подграфа. В остальных подграфах выберем ребра любого из паросочетаний <tex>M_1</tex> и <tex>M_2</tex>. Таким образом, получили полное паросочетание в графе <tex>\mathbb{G'}</tex>, противоречие.   
+
Построим граф <tex>H</tex>, такой что <tex>\mathbb{V_\mathbb{H}}=\mathbb{V_\mathbb{G'}}=\mathbb{V_\mathbb{G}}</tex> и <tex>\mathbb{E_\mathbb{H}}=M_1 \oplus M_2</tex>. Получим, что вершины <tex>x,y,z</tex> и <tex>t</tex> лежат на каком-то чередующемся цикле. В силу симметричности <tex>x</tex> и <tex>z</tex> можно считать, что вершины расположены в порядке <tex>tzxy</tex>. Тогда существует путь <tex>P_1=t..zx..y</tex> и полное паросочетание в нем, следовательно существует и путь <tex>P_2=t..zy..x</tex>, содержащий только ребра графа <tex>\mathbb{G'}</tex>. Тогда на пути <tex>x..y</tex> возьмем ребра из паросочетания <tex>M_2</tex>, а на пути <tex>t..z</tex> - ребра из паросочетания <tex>M_1</tex>. Непокрытыми остались вершины z и y, которые мы покроем ребром <tex>yz</tex>. Таким образом нам удалось построить  полное паросочетание на вершинах выбранного подграфа. В остальных подграфах выберем ребра любого из паросочетаний <tex>M_1</tex> и <tex>M_2</tex>. Таким образом, получили полное паросочетание в графе <tex>\mathbb{G'}</tex>, противоречие.   
  
 
В каждом из возможных случаев получили противоречие, значит, наше начальное предположение тоже неверно и <tex>G' \setminus U</tex> {{---}} объединение несвязных полных графов, лемма доказана.
 
В каждом из возможных случаев получили противоречие, значит, наше начальное предположение тоже неверно и <tex>G' \setminus U</tex> {{---}} объединение несвязных полных графов, лемма доказана.

Версия 22:31, 17 декабря 2013

Определение:
[math]o(\mathbb{G})[/math] — число нечетных компонент связности в графе [math]\mathbb{G}[/math], где нечетная компонента — это компонента связности, содержащая нечетное число вершин.


Определение:
Множество Татта графа [math]\mathbb{G}[/math] — множество [math]S \subset \mathbb{V_{G}}[/math], для которого выполнено условие: [math]o(\mathbb{G} \setminus S) \gt \left\vert S \right\vert[/math]


Критерий Татта

Пусть [math]\mathbb{G'}[/math] — граф, полученный из [math]\mathbb{G}[/math], добавлением ребер, при этом в [math]\mathbb{G'}[/math] нет полного паросочетания, но оно появляется при добавлении любого нового ребра.

Пусть [math] U = \{ v \in V: deg_{G'} (v) = n - 1 \}[/math].

Очевидно, что [math]\left\vert U \right\vert \ne n[/math], потому что [math]G'[/math] — не полный граф.

Лемма:
[math]G' \setminus U[/math] — объединение несвязных полных графов.
Доказательство:
[math]\triangleright[/math]

Пусть это не так, тогда существуют вершины [math]x,y,z \in \mathbb{V_\mathbb{G'}} \setminus U[/math], такие что [math]xy, yz \in \mathbb{E_\mathbb{G'}}[/math], но [math]xz \notin \mathbb{E_\mathbb{G'}}[/math]. Так как [math]y \notin U[/math], то [math]\exists t \notin U: yt \notin \mathbb{E_\mathbb{G'}}[/math].

В графе [math]\mathbb{G'}+xz[/math] существует полное паросочетание [math]M_1[/math], так как граф [math]\mathbb{G'}[/math] максимальный по построению. Аналогично, в графе [math]\mathbb{G'}+yt[/math] существует полное паросочетание [math]M_2[/math]. Так как в [math]\mathbb{G'}[/math] нет полного паросочетания, то [math]xz \in M_1[/math] и [math]yt \in M_2[/math].

Возможны два случая:

  • Вершины [math]x,z[/math] и [math]y,t[/math] лежат в разных полных подграфах графа [math]\mathbb{G'} \setminus U[/math], обозначим их [math]H_1[/math] и [math]H_2[/math], соответственно.
К доказательству 2-ого пункта леммы.

Покроем вершины подграфа [math]H_1[/math] паросочетанием [math]M_2[/math], при этом заметим, что ребро [math]xz[/math] не входит в это паросочетание. Аналогично покроем паросочетанием [math]M_1[/math] вершины подрафа [math]H_2[/math] и ребро [math]yt[/math] не войдет в это паросочетание. Если остались непокрытые вершины, то покроем их ребрами из любого паросочетания [math]M_1[/math] или [math]M_2[/math]. Таким образом, мы получим полное паросочетание в графе [math]\mathbb{G'}[/math], что противоречит его построению.

  • Вершины [math]x,y,z[/math] и [math]t[/math] лежат в одном подграфе графа [math]\mathbb{G'} \setminus U[/math].

Построим граф [math]H[/math], такой что [math]\mathbb{V_\mathbb{H}}=\mathbb{V_\mathbb{G'}}=\mathbb{V_\mathbb{G}}[/math] и [math]\mathbb{E_\mathbb{H}}=M_1 \oplus M_2[/math]. Получим, что вершины [math]x,y,z[/math] и [math]t[/math] лежат на каком-то чередующемся цикле. В силу симметричности [math]x[/math] и [math]z[/math] можно считать, что вершины расположены в порядке [math]tzxy[/math]. Тогда существует путь [math]P_1=t..zx..y[/math] и полное паросочетание в нем, следовательно существует и путь [math]P_2=t..zy..x[/math], содержащий только ребра графа [math]\mathbb{G'}[/math]. Тогда на пути [math]x..y[/math] возьмем ребра из паросочетания [math]M_2[/math], а на пути [math]t..z[/math] - ребра из паросочетания [math]M_1[/math]. Непокрытыми остались вершины z и y, которые мы покроем ребром [math]yz[/math]. Таким образом нам удалось построить полное паросочетание на вершинах выбранного подграфа. В остальных подграфах выберем ребра любого из паросочетаний [math]M_1[/math] и [math]M_2[/math]. Таким образом, получили полное паросочетание в графе [math]\mathbb{G'}[/math], противоречие.

В каждом из возможных случаев получили противоречие, значит, наше начальное предположение тоже неверно и [math]G' \setminus U[/math] — объединение несвязных полных графов, лемма доказана.
[math]\triangleleft[/math]

Теорема Татта

Теорема:
В графе [math]\mathbb{G}[/math] существует полное паросочетание [math]\Leftrightarrow[/math] [math]\forall S \subset \mathbb{V_\mathbb{G}}[/math] выполнено условие: [math]o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert[/math]
Доказательство:
[math]\triangleright[/math]

[math]\Rightarrow[/math] Рассмотрим [math]M[/math] — полное паросочетание в графе [math]\mathbb{G}[/math] и множество вершин [math]S \subset \mathbb{V_\mathbb{G}}[/math].

Одна из вершин каждой нечетной компоненты связности графа [math] \mathbb{G} \setminus S[/math] соединена ребром паросочетания [math]M[/math] с какой-то вершиной из [math]S[/math]. Иначе мы не сможем покрыть паросочетанием все вершины этой компоненты связности и получим противоречие с тем, что полное паросочетание существует по условию теоремы. Таким образом, получаем, что [math]o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert[/math].

[math]\Leftarrow[/math] Пусть для графа [math]\mathbb{G}[/math] выполнено, что [math]o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert[/math], но полного паросочетания в этом графе не существует.

Рассмотрим граф [math]\mathbb{G'}[/math] и множество вершин [math]U[/math] (из леммы). Так как число нечетных компонент не увеличивается при добавлении новых ребер, то [math]\forall S \subset \mathbb{V_\mathbb{G}}[/math] выполнено [math]o(\mathbb{G'} \setminus S) \leqslant o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert[/math]. По лемме, доказанной выше: [math]\mathbb{G'} \setminus U[/math] — объединение несвязных полных графов.

Очевидно, что в каждой четной компоненте связности графа [math]\mathbb{G'} \setminus U[/math] мы можем построить полное паросочетание. В каждой нечетной компоненте этого графа построим паросочетание, которое покрывает все вершины кроме одной, оставшуюся непокрытой вершину, соединим с какой-то вершиной множества [math]U[/math]. При этом мы будем использовать различные вершины из [math]U[/math], это возможно, так как [math]o(G' \setminus U) \leqslant \left\vert U \right\vert[/math]. Если все вершины множества [math]U[/math] оказались покрытыми, то мы получили полное паросочетание в графе [math]\mathbb{G'}[/math]. Противоречие, так как по построению в [math]\mathbb{G'}[/math] нет полного паросочетания.

Значит, в [math]U[/math] осталось какое-то количество непокрытых вершин, при этом их четное число, потому что число вершин в [math]\mathbb{G'}[/math] четно, так как [math]o(\mathbb{G'} \setminus \varnothing) \leqslant \left\vert \varnothing \right\vert = 0[/math] и уже покрыто паросочетанием четное число вершин. Так как в множество [math]U[/math] входят вершины, которые в [math]\mathbb{G'}[/math] смежны со всеми остальными, то мы сможем разбить оставшиеся вершины на пары и покрыть их паросочетанием.

Таким образом, получили в [math]\mathbb{G'}[/math] полное паросочетание, что противоречит тому, как мы задали этот граф изначально.

Значит, начальное предположение не верно, и в [math]\mathbb{G}[/math] существует полное паросочетание.
[math]\triangleleft[/math]

Литература

Д.В.Карпов. Теория графов