Лемма Бёрнсайда и Теорема Пойа — различия между версиями
Snopi (обсуждение | вклад) |
|||
Строка 19: | Строка 19: | ||
<tex> |C| = </tex> <tex dpi = "180">\frac{1} {|G|}</tex><tex>\sum\limits_{k \in G}I(k)</tex>. Где <tex>I(k)</tex> {{---}} количество стабилизаторов для элемента <tex>k</tex>. | <tex> |C| = </tex> <tex dpi = "180">\frac{1} {|G|}</tex><tex>\sum\limits_{k \in G}I(k)</tex>. Где <tex>I(k)</tex> {{---}} количество стабилизаторов для элемента <tex>k</tex>. | ||
|proof= | |proof= | ||
− | Так как <tex>I(k)</tex> - сумма стабилизаторов элемента <tex>k</tex>, то по определению <tex>\sum\limits_{k \in G}I(k) = |\{(x, g) \in G\times X \mid g\cdot x = x\}|</tex>. | + | Так как <tex>I(k)</tex> {{---}} сумма стабилизаторов элемента <tex>k</tex>, то по определению <tex>\sum\limits_{k \in G}I(k) = |\{(x, g) \in G\times X \mid g\cdot x = x\}|</tex>. |
Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство: | Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство: | ||
Строка 51: | Строка 51: | ||
|id=teorPo. | |id=teorPo. | ||
|author=Пойа | |author=Пойа | ||
− | |statement= <tex> C =</tex> <tex dpi = "180"> \frac{1} {|G|}</tex><tex>\sum\limits_{k \in G} l^{P(k)}</tex> ,где <tex>C</tex> {{---}} кол-во различных классов эквивалентности, <tex>P(k)</tex> - кол-во циклов в перестановке <tex>k</tex>, <tex>l</tex> {{---}} кол-во различных состояний одного элемента. | + | |statement= <tex> C =</tex> <tex dpi = "180"> \frac{1} {|G|}</tex><tex>\sum\limits_{k \in G} l^{P(k)}</tex> ,где <tex>C</tex> {{---}} кол-во различных классов эквивалентности, <tex>P(k)</tex> {{---}} кол-во циклов в перестановке <tex>k</tex>, <tex>l</tex> {{---}} кол-во различных состояний одного элемента. |
|proof=Для доказательства этой теорем достаточно установить следующее равенство | |proof=Для доказательства этой теорем достаточно установить следующее равенство | ||
<tex>I(k) = l^{P(k)}</tex> | <tex>I(k) = l^{P(k)}</tex> | ||
Строка 61: | Строка 61: | ||
==Задача о числе раскрасок прямоугольника== | ==Задача о числе раскрасок прямоугольника== | ||
− | {{ | + | {{Задача |
|definition=Выведите формулу для числа раскрасок прямоугольника <tex>[n \times m]</tex> в <tex>k</tex> цветов с точностью до отражения относительно горизонтальной и вертикальной оси. | |definition=Выведите формулу для числа раскрасок прямоугольника <tex>[n \times m]</tex> в <tex>k</tex> цветов с точностью до отражения относительно горизонтальной и вертикальной оси. | ||
}} | }} | ||
Строка 83: | Строка 83: | ||
Тогда воспользуемся Леммой Бёрнсайда и определим количество таких раскрасок. | Тогда воспользуемся Леммой Бёрнсайда и определим количество таких раскрасок. | ||
− | :<tex dpi = " | + | :<tex dpi = "160"> |C| = \frac{1} {|G|} \sum\limits_{k \in G}I(k) = \frac{I_1 + I_2 + I_3 + I_4}{4} = \frac{k^{nm}+k^{\lceil \frac{m}{2} \rceil n} + k^{{\lceil {\frac{n}{2}} \rceil}m} + k^{{\lceil {\frac{n}{2}} \rceil}{\lceil \frac{m}{2} \rceil}}}{4}</tex> |
− | |||
==См. также== | ==См. также== |
Версия 03:34, 6 января 2016
Иногда требуется провести подсчет комбинаторных объектов с точностью до некоторого отношения эквивалетности. Если это отношение является отношением "с точностью до действия элементом группы", то такой подсчет можно провести с помощью Леммы Бернсайда.
Определение: |
Пусть группа | действует на множество . Неподвижной точкой (стабилизатором) для элемента называется такой элемент , для которого .
Содержание
Лемма Бёрнсайда
Лемма (Бёрнсайд): |
Пусть группа действует на множество . Будем называть два элемента и эквивалентными, если для некоторого . Тогда число классов эквивалентности равно сумме числа стабилизаторов по всем элементам группы , делённой на размер этой группы:
. Где — количество стабилизаторов для элемента . |
Доказательство: |
Так как — сумма стабилизаторов элемента , то по определению .Следовательно для доказательства леммы необходимо и достаточно доказать следующее равенство: Рассмотрим правую часть равенства: Заметим, что Следовательно:. Очевидно, что Тогда получим:
Откуда следует, что ч.т.д. |
Теорема Пойа
Теорема Пойа является обобщением теоремы Бёрнсайда. Она также позволяет находить количество классов эквивалентности, но уже используя такую величину, как кол-во циклов в перестановке. В основе доказательства теоремы Пойа лежит лемма Бёрнсайда.
Теорема (Пойа): |
,где — кол-во различных классов эквивалентности, — кол-во циклов в перестановке , — кол-во различных состояний одного элемента. |
Доказательство: |
Для доказательства этой теорем достаточно установить следующее равенство
|
Задача о числе раскрасок прямоугольника
Задача: |
Выведите формулу для числа раскрасок прямоугольника | в цветов с точностью до отражения относительно горизонтальной и вертикальной оси.
Решим данную задачу, воспользуясь леммой Бёрнсайда.
Решение
Для начала определим, какие операции определены на группе
— это операция "отражение относительно горизонтальной оси", обозначим ее как , и "отражение относительно вертикальной оси" — . Таким образом, содержит 4 комбинации операций: .Стоит уделить особое внимание тому факту, что никакие иные комбинации функций
и не были включены в . Это объясняется довольно просто: очевидно то, что операции коммутативны, то есть , а также то, что , тогда любая комбинация данных функций может быть упрощена до вышеперечисленных (в ) путем совмещения одинаковых и замены их на .Отметим также то, что количество раскрасок прямоугольника
в цветов:- 1. С точностью до операции при нечетном равно количеству раскрасок прямоугольника в цветов.
- 2. С точностью до операции при нечетном равно количеству раскрасок прямоугольника в цветов.
- 3. С точностью до операции при нечетных и равно количеству раскрасок прямоугольника в цветов (а также частные случаи, когда или нечетные).
Данное множество фактов объясняется тем, что мы можем как бы "слить" вместе два столбика (и\или) столбца, при этом с точностью до нужного действия количество раскрасок не уменьшится.
Количество стабилизаторов в случае с действием
равно , так как ни одна раскрашенная клетка не повторилась при действии нулевого действия. Для действий и количество раскрасок будет и соответственно.Тогда воспользуемся Леммой Бёрнсайда и определим количество таких раскрасок.