Пересечение полуплоскостей, связь с выпуклыми оболочками — различия между версиями
Igorjan94 (обсуждение | вклад) м |
Igorjan94 (обсуждение | вклад) м |
||
Строка 14: | Строка 14: | ||
Тут бы и закончить конспект, но стоит уточнить, что у пересечения полуплоскостей есть одна небольшая особенность {{---}} оно может быть пусто, тогда как выпуклая оболочка вполне себе всегда определена, и это надо учитывать. И еще. когда мы рассматриваем верхнюю(нижнюю) огибающую, мы рассматриваем все прямые кроме вертикальных. Еще прямые близкие к вертикальным, но имеющие разный наклон (/ и \) are mapped to very different points. Отсюда выходит то, почему конвекс-халл состоит из двух таких разных и одинаковых частей. | Тут бы и закончить конспект, но стоит уточнить, что у пересечения полуплоскостей есть одна небольшая особенность {{---}} оно может быть пусто, тогда как выпуклая оболочка вполне себе всегда определена, и это надо учитывать. И еще. когда мы рассматриваем верхнюю(нижнюю) огибающую, мы рассматриваем все прямые кроме вертикальных. Еще прямые близкие к вертикальным, но имеющие разный наклон (/ и \) are mapped to very different points. Отсюда выходит то, почему конвекс-халл состоит из двух таких разных и одинаковых частей. | ||
− | + | Короче есть биекция <tex> D </tex> между точками и прямыми. | |
<tex> D(P(k, b)) = (Y = kX - b) </tex> | <tex> D(P(k, b)) = (Y = kX - b) </tex> |
Версия 19:50, 24 января 2014
Короче говоря, верхний(нижний) конвекс-халл для множества точек, то же самое, что и нижняя(верхняя) огибающая(англ. lower(upper) envelope) для множества прямых.
Если рассмотреть что ребро
принадлежит верхнему конвекс-халлу это означает, что все остальные точки лежат снизу. А если ребро принаджлежит нижней огибающей, то все остальные прямые лежат сверху. Короче да, одно и то же...Если в конвекс-халле мы идем слева направо по увеличению икса, то тут то же самое будет, если мы пойдем справа налево по увеличению угла наклона.
Полностью считать пересечние можно по отдельности (верхняя + нижняя огибающая), а можно и сразу все, как полный конвекс-халл.
Тут бы и закончить конспект, но стоит уточнить, что у пересечения полуплоскостей есть одна небольшая особенность — оно может быть пусто, тогда как выпуклая оболочка вполне себе всегда определена, и это надо учитывать. И еще. когда мы рассматриваем верхнюю(нижнюю) огибающую, мы рассматриваем все прямые кроме вертикальных. Еще прямые близкие к вертикальным, но имеющие разный наклон (/ и \) are mapped to very different points. Отсюда выходит то, почему конвекс-халл состоит из двух таких разных и одинаковых частей.
Короче есть биекция
между точками и прямыми.
Источники
- Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars (2008), Computational Geometry: Algorithms and Applications (3rd edition), Springer-Verlag, ISBN 978-3-540-77973-5 Chapter 15 page 253-254
- http://wwwisg.cs.uni-magdeburg.de/ag/lehre/SS2012/GAG/slides/V12.pdf