Регулярная аппроксимация КС-языков — различия между версиями
Danek g30 (обсуждение | вклад) (→Алгоритм преобразования грамматики в конечный автомат) |
Danek g30 (обсуждение | вклад) (→Идея алгоритма) |
||
Строка 41: | Строка 41: | ||
'''if''' !IsLeftType(<tex>N_i</tex>) && !IsRihtType(<tex>N_i</tex>) | '''if''' !IsLeftType(<tex>N_i</tex>) && !IsRihtType(<tex>N_i</tex>) | ||
return cyclic; | return cyclic; | ||
− | Заметим, что <tex> \forall i </tex> <tex>recursive(N_i) \neq self </tex>, т.к грамматика не самоприменима. | + | Заметим, что <tex> \forall i </tex> <tex>recursive(N_i) \neq self </tex>, т.к грамматика не самоприменима.<br \> |
В основе алгоритма будет рекурсивный обход грамматики во все стороны. Спускаемся по грамматике до тех пор не приходим в терминал или символ алфавита: | В основе алгоритма будет рекурсивный обход грамматики во все стороны. Спускаемся по грамматике до тех пор не приходим в терминал или символ алфавита: | ||
# символ алфавит или <tex> /varepsilon </tex> {{---}} добовляем новое правило в автомат | # символ алфавит или <tex> /varepsilon </tex> {{---}} добовляем новое правило в автомат | ||
# нерекурсивный нетерминал {{---}} запускаемся от всех правых частей правил, который терминал порождает | # нерекурсивный нетерминал {{---}} запускаемся от всех правых частей правил, который терминал порождает | ||
− | # рекурсивный терминал {{---}} в зависимости от типа рекурсивного нетерминала, продолжаем рекурсию (будет ясно из пседокода) | + | # рекурсивный терминал {{---}} в зависимости от типа рекурсивного нетерминала, продолжаем рекурсию (будет ясно из пседокода) |
===Псевдокод=== | ===Псевдокод=== |
Версия 20:15, 19 января 2014
Содержание
Определения
Определение: |
Контекстно-свободная грамматика называется самоприменимой, если , . |
Определение: |
Нетерминал | в грамматике называется рекурсивным, если .
Определение: |
Нетерминалы | в грамматике называются взаимно рекурсивными, если .
Алгоритм преобразования грамматики в конечный автомат
Лемма: |
Не самоприменимая контекстно-свободная грамматика генерирует регулярный язык. |
Доказательство: |
В качестве конструктивного доказательства, мы приведем алгоритм построения конечного автомата по грамматике. В источниках есть ссылка на формальное доказательство. |
Идея алгоритма
Пусть,
множество рекурсивных терминалов из . Пусть, разбиение на дизъюнктных множеств взаимно рекурсивных терминалов, . Ввведем функцию :function IsLeftType() return function IsRightType( ) return
function recursive (): if !IsLeftType( ) && IsRihtType( ) return left; if IsLeftType( ) && !IsRihtType( ) return right; if (IsLeftType( ) && IsRihtType( ) return self; if !IsLeftType( ) && !IsRihtType( ) return cyclic;
Заметим, что
В основе алгоритма будет рекурсивный обход грамматики во все стороны. Спускаемся по грамматике до тех пор не приходим в терминал или символ алфавита:
- символ алфавит или — добовляем новое правило в автомат
- нерекурсивный нетерминал — запускаемся от всех правых частей правил, который терминал порождает
- рекурсивный терминал — в зависимости от типа рекурсивного нетерминала, продолжаем рекурсию (будет ясно из пседокода)
Псевдокод
— множество состояний ДКА. — множество переходов ДКА. — множество допускающих состояний.
function createFA(G) //s = createState f = createState return makeFA (s,S,f) function makeFA (q0,a,q1) if a == || a // пришли в лист дерева разбора return if a == where q = createState makeFA ( ) makeFA ( ) return if exist where foreach b in = createState if recursive( ) == left foreach C in where makeFA ( ) foreach C,D in where makeFA ( ) else // рекурсивный нетерминал rihgt или self foreach C in where makeFA ( ) foreach C,D in where makeFA ( ) return foreach p in where p == makeFA ( )
Апроксимации самоприменимой грамматики
В данном разделе покажем методы апроксимации самоприменимой свободной контекстной грамматики НФХ.
к регулярной грамматике. Для удобства будем считать, что грамматика представлена вRTN апраксимация
Построим, по данной грамматике аппроксимирующий ее конечный автомат.
- Для каждого нетерминала в грамматике, создадим новый конечный автомат , добавим два состояния в : .
- Для каждого правила грамматике , введм новые состояния в автомат этого нетерминала , а также добавим новые правила перехода в : .
- Таким образом мы построили множество конечных автоматов = для каждого нетерминала . Теперь объединим все в один автомат. Объединим все состоянии автоматов из в множество . Скопируем все переходы каждого автомата из в . Далее для каждого перехода вида , вместо него добавим два новых перехода: .
MT апраксимация
Построим, по данной самоприменимой кс грамматике
, регулярную грамматику .- Для каждого нетерминала из , добавим нетерминалы и в .
- Для каждого правила
(Если , тогда добавим правило ). , где . Добавим в нетерминалы и следуюшие правила: .
В итоге правоконтекстная грамматика, эквивалентная конечному автомату, который задает регулярный язык.
—Пример