Теорема Хаусдорфа об ε-сетях — различия между версиями
Shersh (обсуждение | вклад) м (→Теорема Хаусдорфа) |
(→Теорема Хаусдорфа) |
||
| Строка 68: | Строка 68: | ||
<tex> | <tex> | ||
| + | \begin{center} | ||
\begin{tabular}{c|cccc} | \begin{tabular}{c|cccc} | ||
$\varepsilon_1$ & $x_{1, 1}$ & $x_{1, 2}$ & $x_{1, 3}$ & \ldots \\ | $\varepsilon_1$ & $x_{1, 1}$ & $x_{1, 2}$ & $x_{1, 3}$ & \ldots \\ | ||
| Строка 77: | Строка 78: | ||
$\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\ddots$ \\ | $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\ddots$ \\ | ||
\end{tabular} | \end{tabular} | ||
| + | \end{center} | ||
</tex> | </tex> | ||
Версия 01:09, 5 декабря 2019
Некоторые определения
Пусть — метрическое пространство. Тогда принимая критерий Коши существования предела числовой последовательности за аксиому, приходим к понятию полного метрического пространства:
Например, в связи с критерием Коши, — полное метрическое пространство.
| Определение: |
| Пусть , . Тогда — -сеть для , если . |
Особый интерес представляют конечные -сети.
| Определение: |
| — вполне ограничено в , если конечная -сеть. |
Теорема Хаусдорфа
| Теорема (Хаусдорф): |
Пусть — полное метрическое пространство, , — замкнуто.
Тогда — компакт — вполне ограниченно. |
| Доказательство: |
|
Пусть — компакт. Предположим, что — не вполне ограниченно. Тогда . Если такого нет, то имеет -сеть . Тогда найдётся . Если бы такого не было, то у была бы -сеть . И так далее. Получаем набор точек , . Так как — компакт, то из этой последовательности можно выделить сходящуюся. Но по построению последовательности это невозможно, получили противоречие.
— замкнутое и вполне ограниченно. Рассмотрим любую последовательность в . Докажем, что из неё можно выделить сходящуюся подпоследовательность. Так как множество вполне ограничено, то оно будет содержаться в конечном объединении шаров радиуса . Рассмотрим последовательность . Она сходится к нулю. Так как — вполне ограниченна, то можно найти точки — -сеть для .
Шаров конечное число. Значит, среди них есть тот, который содержит бесконечное число элементов последовательности. бесконечно много элементов из . Обозначим как . Пусть — замкнутое и вполне ограниченно. Покроем его конечной системой шаров радиуса . Среди них выберем тот, в котором бесконечно много элементов . И так далее... В результате выстраивается следующая бесконечная таблица:
В первой строке бесконечно много элементов из . Во второй строке бесконечно много элементов из . И так далее. Рассмотрим последовательность точек (диагональ Кантора) Очевидно, это подпоследовательность исходной последовательности. Если доказать, что она сходится в себе, то, так как — полное, у неё будет предел. Так как — замкнутое, то предел этой последовательности принадлежит ей. Рассмотрим Так как есть в -й строке, то . Так как , последовательность сходится в себе, то, по полноте , у неё есть предел. |