Примеры матроидов — различия между версиями
Maryann (обсуждение | вклад) (→Универсальный матроид) |
Maryann (обсуждение | вклад) м (→Матричный матроид) |
||
Строка 3: | Строка 3: | ||
|definition= | |definition= | ||
Пусть <tex>V</tex> - векторное пространство над телом <tex>F</tex>, пусть набор векторов <tex>V_i = \mathcal{f} v_1,...,v_n\mathcal {g}</tex> из пространства <tex>V</tex> является носителем <tex>X</tex>. Элементами независимого множества <tex>I</tex> данного матроида являются множества линейно-независимых векторов из набора <tex>v_1,...,v_n</tex>. | Пусть <tex>V</tex> - векторное пространство над телом <tex>F</tex>, пусть набор векторов <tex>V_i = \mathcal{f} v_1,...,v_n\mathcal {g}</tex> из пространства <tex>V</tex> является носителем <tex>X</tex>. Элементами независимого множества <tex>I</tex> данного матроида являются множества линейно-независимых векторов из набора <tex>v_1,...,v_n</tex>. | ||
− | Тогда <tex>M = \langle V_i, I \rangle </tex>, называется '''матричным матроидом''' | + | Тогда <tex>M = \langle V_i, I \rangle </tex>, называется '''матричным матроидом (Vector Matroid)''' |
}} | }} | ||
{{Лемма | {{Лемма | ||
Строка 23: | Строка 23: | ||
}} | }} | ||
+ | |||
==Графовый матроид== | ==Графовый матроид== | ||
{{Определение | {{Определение |
Версия 17:17, 5 июня 2014
Матричный матроид
Определение: |
Пусть | - векторное пространство над телом , пусть набор векторов из пространства является носителем . Элементами независимого множества данного матроида являются множества линейно-независимых векторов из набора . Тогда , называется матричным матроидом (Vector Matroid)
Лемма: |
Матричный матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Множество в котором нет векторов является линейно-независимым. 2) Если из набора линейно-независимых векторов убрать некоторые, то этот набор не станет зависимым. 3) Пусть не так. Тогда множество векторов - линейно зависимо. Значит оно образует базис в пространстве векторов "натянутом" на множество векторов . Но тогда , так как мощность базиса больше мощности любого линейно-независимого множества, а - линейно-независимо. Противоречие с условием. По условию . |
Графовый матроид
Определение: |
Пусть | - неориентированный граф. Тогда , где состоит из всех ацикличных множеств ребер (то есть являющихся лесами), называют графовым (графическим) матроидом.
Лемма: |
Графовый матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Пустое множество является ациклическим, а значит входит в .2) Очевидно, что любой подграф леса, так же является лесом, а значит входит в вследствие своей ацикличности.3) В графе Допустим в как минимум две компоненты связанности, иначе являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью. не существует ребра, соединяющего две различные компоненты связанности из , значит любая компонента связанности из целиком вершинно-входит в какую-либо компоненту из . Рассмотрим любую компоненту связанности Q из , у неё вершин и рёбер. Теперь рассмотрим все компоненты связанности из вершинно-входящие в , пусть их штук, тогда суммарное кол-во рёбер из равно что не превосходит (кол-во рёбер в ). Просуммируем неравенство по всем компонентам связанности из и получим что противоречит условию. Значит предположение не верно и в существует искомое ребро из разных компонент связанности . |
Трансверсальный матроид
Определение: |
Пусть | - двудольный граф. Тогда паросочетание называют трансверсальным матроидом.
Лемма: |
Трансверсальный матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Пустое паросочетание удовлетворяет условию. 2) Подмножество паросочетания также является паросочетанием. Удалим из исходного паросочетания ребра, концами которых являются вершины из множества . Оставшееся множество ребер будет являться паросочетанием, которое обозначим за . И будет выполняться условие , что значит, .3) Раскрасим ребра из паросочетания, соответствующего в синий цвет, а соответствующего — в красный. Причем ребра, соответствующие двум паросочетаниям, будут окрашены в пурпурный цвет. Таким образом, получится ребер синего цвета, ребер красного цвета, и будет выполняться соотношение . Рассмотрим подграф , индуцированный красными и синими ребрами из исходного графа. Каждая вершина соответствует либо двум ребрам — синему и красному, либо одному — синему или красному. Любая компонента связности представляет собой либо путь, либо цикл, состоящий из чередующихся красных и синих ребер. Так как граф двудольный, любой цикл состоит из четного числа ребер. Так как синих ребер больше, чем красных, то должен существовать путь, начинающийся и оканчивающийся синим ребром. Обозначим этот путь . Поменяем в синий и красный цвета. Получаем, что ребра, окрашенные в красный и пурпурный цвета образуют паросочетание в графе. Очевидно, что подмножество соответствующее этому новому паросочетанию имеет вид , где . Что значит, что . |
Универсальный матроид
Определение: |
Универсальным матроидом (Uniform Matroid) называют объект |
Лемма: |
Универсальный матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1)
2)
3) Так как Рассмотрим и числа в каждом множестве различны, найдётся такое число , которое не будет принадлежать меньшему по мощности множеству . . |