Теорема Редеи-Камиона — различия между версиями
Строка 4: | Строка 4: | ||
|proof= | |proof= | ||
− | Докажем,что в любом турнире есть гамильтонов путь по индукции по числу вершин n. | + | Докажем,что в любом турнире есть гамильтонов путь по индукции по числу вершин <tex>n</tex>. |
− | + | ||
− | + | ''База индукции:'' <br> Очевидно, для <tex>n = 3</tex> утверждение верно. | |
− | + | ||
− | # | + | ''Индукционный переход:'' <br> Предположим, что теорема верна для всех турниров с <tex>n</tex> вершинами. Рассмотрим турнир <tex>T</tex> с <tex>n + 1</tex> вершинами. Пусть <tex>v_0</tex> – произвольная вершина турнира <tex>T</tex>. Тогда турнир <tex>T</tex> – <tex>v_0</tex> имеет <tex>n</tex> вершин, значит, в нем есть гамильтонов путь <tex>P</tex>: <tex>v_1v_2...v_n</tex> . Одно из ребер ( <tex>v_0</tex>, <tex>v_1</tex> ) или ( <tex>v_n</tex>, <tex>v_0</tex> ) обязательно содержится в <tex>T</tex>. Рассмотрим 3 случая: |
− | + | # Ребро <tex> ( v_0, v_1 ) \in T </tex>. Тогда путь <tex>v_0v_1v_2...v_n</tex> является гамильтоновым. | |
+ | # Ребро <tex> ( v_0, v_1 ) \notin T </tex>. Обозначим через <tex>v_i</tex> первую вершину пути <tex>P</tex>, для которой ребро <tex> ( v_0, v_i ) \in T </tex>,если такая вершина есть. Тогда в <tex>T</tex> существует ребро ( <tex>v_{i-1}</tex>, <tex>v_0</tex> ) <br> и путь <tex>v_1...v_{i-1}v_0v_i...v_n</tex>– гамильтонов. | ||
+ | # Если такой вершины <tex>v_i</tex> нет, тогда гамильтоновым путем будет <tex>v_1v_2...v_nv_0</tex>. | ||
Итак, в любом случае в турнире существует гамильтонов путь. | Итак, в любом случае в турнире существует гамильтонов путь. | ||
}} | }} | ||
Строка 19: | Строка 21: | ||
Докажем, что в любом сильно связанном турнире есть гамильтонов цикл, по индукции по длине цикла. | Докажем, что в любом сильно связанном турнире есть гамильтонов цикл, по индукции по длине цикла. | ||
− | + | ||
− | + | ''База индукции:'' <br> Покажем, что в любом сильно связанном турнире <tex>T</tex> с <tex>n</tex> вершинами <tex>n \ge 3</tex> есть орцикл длины 3. Выберем произвольную вершину <tex>v_0</tex> и обозначим через <tex>W</tex> множество всех вершин <tex>w</tex>, таких, что ребро <tex>(v_0, w) \in T </tex>, а через <tex>Z</tex> – множество всех вершин <tex>z</tex>, таких, что ребро <tex>(z, v_0) \in T </tex>. Так как <tex>T</tex> сильно связан, то оба множества <tex>W</tex> и <tex>Z</tex> не пусты и найдется ребро <tex>(w', z') \in T </tex> , где <tex>w' \in W, z' \in Z</tex>. Тогда искомым циклом длины 3 будет <tex>v_0</tex>,<tex>w'</tex>,<tex>z'</tex>,<tex>v_0</tex>. | |
− | + | ||
− | + | ''Индукционный переход:'' <br> Покажем, что если турнир <tex>T</tex> с <tex>n</tex> вершинами имеет орцикл <tex>S = v_1v_2...v_kv_1</tex> длины <tex>k < n</tex>, то он имеет также орцикл длины <tex>k + 1</tex>. Рассмотрим 2 случая: | |
− | Таким образом в любом сильно связанном турнире T с n вершинами будет орцикл длины n, то есть гамильтонов цикл. | + | # Существует такая вершина <tex>v_0 \notin S </tex> такая, что найдутся вершины <tex>u , w \in S</tex> , такие, что ребра <tex> (v_0 , u) , (w , v_0) \in T </tex>. Обозначим за <tex>v_1</tex> вершину из <tex>S</tex>, такую, что ребро <tex> ( v_1, v_0 ) \in T </tex>. Пусть <tex>v_i</tex> – первая вершина при обходе контура <tex>S</tex> из <tex>v_1</tex>, для которой ребро <tex> ( v_0, v_i ) \in T </tex>. Тогда ребро <tex>(v_{i-1}, v_0)</tex> также содержится в <tex>T</tex>. Поэтому <tex>v_1v_2...v_{i-1}v_0v_i...v_kv_1</tex> – искомый орцикл длины <tex>k+1</tex>. |
+ | # Пусть такой вершины <tex>v_0</tex> нет. Тогда разобьем вершины, не принадлежащие <tex>S</tex>, на два непересекающихся подмножества <tex>W</tex> и <tex>Z</tex>, где <tex>W</tex> - множество таких вершин <tex>w</tex> , что ребро <tex>(v_i, w)</tex> для любого <tex>i</tex> содержится в <tex>T</tex>, а <tex>Z</tex> – множество таких вершин <tex>z</tex>, что ребро <tex>(z, v_i)</tex> для любого <tex>i</tex> содержится в <tex>T</tex>. Так как <tex>T</tex> сильно связан, то оба множества <tex>W</tex> и <tex>Z</tex> не пусты и найдется ребро <tex> (w', z') \in T </tex> , где <tex>w' \in W , z' \in Z</tex>. Тогда <tex>v_1 w' z' v_3...v_k v_1</tex> – требуемый орцикл. | ||
+ | Таким образом в любом сильно связанном турнире <tex>T</tex> с <tex>n</tex> вершинами будет орцикл длины <tex>n</tex>, то есть гамильтонов цикл. | ||
}} | }} | ||
− | + | '''Следствие'''<br> | |
+ | |||
Турнир является сильно связанным тогда и только тогда, когда он имеет гамильтонов цикл. | Турнир является сильно связанным тогда и только тогда, когда он имеет гамильтонов цикл. | ||
==Литература== | ==Литература== | ||
* Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009 | * Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009 |
Версия 09:06, 19 января 2011
Теорема (Теорема Редеи-Камиона для пути): |
В любом турнире есть гамильтонов путь. |
Доказательство: |
Докажем,что в любом турнире есть гамильтонов путь по индукции по числу вершин .База индукции: Индукционный переход:
|
Теорема (Теорема Редеи-Камиона для цикла): |
В любом сильно связанном турнире есть гамильтонов цикл. |
Доказательство: |
Докажем, что в любом сильно связанном турнире есть гамильтонов цикл, по индукции по длине цикла. База индукции: Индукционный переход:
|
Следствие
Турнир является сильно связанным тогда и только тогда, когда он имеет гамильтонов цикл.
Литература
- Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009