Skip quadtree: определение, время работы — различия между версиями
(→Псевдокод) |
(→Запрос точек в прямоугольнике) |
||
Строка 97: | Строка 97: | ||
==Запрос точек в прямоугольнике== | ==Запрос точек в прямоугольнике== | ||
+ | Задача: нам дается прямоугольник, нужно выдать все точки, лежащие в нем. | ||
+ | |||
+ | Реализация запроса на сжатом квадродереве занимает <tex>O(\sqrt{n} + k)</tex> времени. Используем skip quadtree для ускорения поиска. Для этого ослабим условие задачи, тогда skip quadtree позволит очень быстро (асимптотически) отвечать на такие запросы. | ||
+ | |||
+ | Ослабление: расширим данный прямоугольник на <tex>\varepsilon</tex>. | ||
+ | Тогда в ответ могут попасть точки не из данного прямоугольника, но лежащие внутри <tex>\varepsilon</tex>-области. В большинстве практических задач данное ослабление не ухудшит конечный результат, а только ускорит процесс. | ||
+ | |||
Skip quadtree позволяет отвечать на запрос всех точек, лежащих в прямоугольнике, окруженном <tex>\varepsilon</tex>-областью, за <tex>O(\varepsilon^{-1} \cdot \log n + k)</tex>, где <tex>k</tex> {{---}} число точек в ответе. Алгоритм можно модифицировать для ответа на запрос точек в любой выпуклой фигуре. | Skip quadtree позволяет отвечать на запрос всех точек, лежащих в прямоугольнике, окруженном <tex>\varepsilon</tex>-областью, за <tex>O(\varepsilon^{-1} \cdot \log n + k)</tex>, где <tex>k</tex> {{---}} число точек в ответе. Алгоритм можно модифицировать для ответа на запрос точек в любой выпуклой фигуре. | ||
Строка 103: | Строка 110: | ||
[[Файл:Skip_quadtree_rect.png|right|400px]] | [[Файл:Skip_quadtree_rect.png|right|400px]] | ||
Данный прямоугольник <tex>R</tex> разбивает вершины на следующие классы: | Данный прямоугольник <tex>R</tex> разбивает вершины на следующие классы: | ||
− | * <tex>\mathrm{in}</tex> {{---}} внутренние, то есть лежащие внутри <tex>\varepsilon</tex>-области (1 на рисунке). | + | * <tex>\mathrm{in}</tex> {{---}} внутренние, то есть лежащие внутри <tex>\varepsilon</tex>-области (1 и 6 на рисунке). |
* <tex>\mathrm{out}</tex> {{---}} внешние, то есть лежащие вне прямоугольника <tex>R</tex> (2 на рисунке). | * <tex>\mathrm{out}</tex> {{---}} внешние, то есть лежащие вне прямоугольника <tex>R</tex> (2 на рисунке). | ||
− | * <tex>\mathrm{stabbing}</tex> {{---}} пронзающие, пересекающие <tex>R</tex>, но не являющие внутренними (3 на рисунке). | + | * <tex>\mathrm{stabbing}</tex> {{---}} пронзающие, пересекающие <tex>R</tex>, но не являющие внутренними (3, 4 и 5 на рисунке). |
Для вершин из классов <tex>\mathrm{in}</tex> и <tex>\mathrm{out}</tex> ответ на запрос находится тривиально, сложность представляют вершины из класса <tex>\mathrm{stabbing}</tex>. Зная их все, мы можем ответить на запрос. | Для вершин из классов <tex>\mathrm{in}</tex> и <tex>\mathrm{out}</tex> ответ на запрос находится тривиально, сложность представляют вершины из класса <tex>\mathrm{stabbing}</tex>. Зная их все, мы можем ответить на запрос. |
Версия 00:14, 23 сентября 2014
Содержание
Описание
Skip quadtree — как skip list, только вместо list'а quadtree. Поэтому желательно знать, что такое skip list, и необходимо знать, что такое сжатое квадродерево. В данной статье будет рассматриваться только рандомизированая версия этой структуры, потому что больше и не нужно, кажется.
The randomized skip quadtree — последовательность сжатых квадродеревьев над последовательностью подмножеств некоторого исходного множества интересный в , то он интересный и в .
. , в каждый элемент из входит с вероятностью и так далее. The randomized skip quadtree состоит из последовательности , где — сжатое квадродерево над множеством . Будем называть эти квадродеревья уровнями, при этом нулевой уровень содержит в точности точки из . Заметим, что если какой-то квадратОперации над skip quadtree
Будем для каждого интересного квадрата на каждом уровне хранить указатели на тот же квадрат уровнем ниже и уровнем выше (если есть).
Локализация выполняется аналогично сжатому квадродереву. Под локализацией подразумевается, что мы хотим найти минимальный интересный квадрат, содержащий данную точку (содержит геометрически, в самом дереве её может не быть, тут, возможно, правильнее сказать «пересекает»). Сначала локализуемся в квадродереве наибольшего уровня, начиная с его корня. Затем локализуемся в квадродереве уровня ниже, начиная уже не с корня, а с того квадрата, который нашли на прошлом уровне. И так далее, пока не дойдём до дна.
Для добавления сначала надо локализоваться. При этом мы локализуемся сразу на всех уровнях (так уж устроен процесс). Дальше добавляемся в нулевой уровень, затем с вероятностью
добавляемся на уровень выше и так далее до первого недобавления. При этом количество уровней должно увеличиться максимум на 1, то есть, если появился новый уровень, то процесс точно заканчивается. Хотя не, давайте без последнего условия, вроде с ним только лучше, но без него проще доказывать.Удаление совсем просто: локализуемся, удаляем со всех уровней, на которых есть. При этом какой-то уровень мог стать пустым, в таком случае выкинем его.
Время работы и память
Лемма (О количестве шагов на одном уровне): |
На каждом уровне в среднем совершается шагов поиска для любой точки . |
Доказательство: |
Пусть в (то есть на -ом уровне) поиск точки , начинающийся с корня, проходит по квадратам . Пусть случайная величина — количество шагов поиска в , тогда — последний квадрат из , являющийся интересным в .Оценим вероятность того, что делается шагов. Забьём на случай , так как он не важен при расчёте мат. ожидания. На пути будет хотя бы непустых четвертинок. У первого квадрата на этом пути есть хотя бы 2 непустые четвертинки, одна из них — следующий квадрат на пути, в котором тоже хотя бы 2 непустые четвертинки, и так далее. В последнем квадрате просто хотя бы 2 непустые четвертинки. Чтобы был последним из интересным квадратом в небходимо, чтобы среди этих как минимум непустых четвертинок только одна (вероятность этого назовём ) или ноль (вероятность этого назовём ) были непустыми в . Иначе, если будет хотя бы пара непустых четвертинок, то их наименьший общий предок в дереве будет интересным квадратом и будет находиться глубже . Таким образом, искомая вероятность не превосходит .
, потому что это в сущности вероятность того, что ни одна точка из как минимум непустых четвертинок не попала на уровень выше. , потому что это в сущности вероятность того, что ровно одна точка из как минимум непустых четвертинок попала на уровень выше.
|
Лемма (О количестве уровней): |
Математическое ожидание количества уровней составляет |
Доказательство: |
Для оценки мат. ожидания посчитаем вероятность того, что количество уровней равно .. , потому что вероятность того, что точка дойдёт до уровня , равна . , потому что вероятность того, что точка не дойдёт до уровня , равна .
Теперь посчитаем мат. ожидание количества уровней:
Оценим первую сумму: , поскольку сумма этих вероятностей не превосходит единицу. Оценим вторую сумму:
Рассмотрим эту сумму:
Суммируя всё вышесказанное, получаем, что Для лучшего понимания можно представлять, что . . |
Теорема (О времени работы): |
Поиск, добавление и удаление точки работают за в среднем. |
Доказательство: |
Напрямую следует из двух предыдущих лемм. |
Теорема (О занимаемой памяти): |
Математическое ожидание занимаемой памяти — . |
Доказательство: |
Сжатое квадродерево для | точек занимает памяти. На нулевом уровне точек. На следующем уровне точек, дальше и так далее. Получим геометрическую прогрессию, в итоге памяти.
Запрос точек в прямоугольнике
Задача: нам дается прямоугольник, нужно выдать все точки, лежащие в нем.
Реализация запроса на сжатом квадродереве занимает
времени. Используем skip quadtree для ускорения поиска. Для этого ослабим условие задачи, тогда skip quadtree позволит очень быстро (асимптотически) отвечать на такие запросы.Ослабление: расширим данный прямоугольник на
. Тогда в ответ могут попасть точки не из данного прямоугольника, но лежащие внутри -области. В большинстве практических задач данное ослабление не ухудшит конечный результат, а только ускорит процесс.Skip quadtree позволяет отвечать на запрос всех точек, лежащих в прямоугольнике, окруженном
-областью, за , где — число точек в ответе. Алгоритм можно модифицировать для ответа на запрос точек в любой выпуклой фигуре.Обозначим наш прямоугольник
. Тогда -область — область , охватывающая , граница которой удалена от его сторон на .Данный прямоугольник
разбивает вершины на следующие классы:- — внутренние, то есть лежащие внутри -области (1 и 6 на рисунке).
- — внешние, то есть лежащие вне прямоугольника (2 на рисунке).
- — пронзающие, пересекающие , но не являющие внутренними (3, 4 и 5 на рисунке).
Для вершин из классов
и ответ на запрос находится тривиально, сложность представляют вершины из класса . Зная их все, мы можем ответить на запрос.Мощность множества пронзающих вершин может составлять
, так как пронзающие вершины могут быть вложены друг в друга, тогда как нам достаточно рассмотреть только наименьшую из вложенных вершин.Назовем пронзающую вершину критической, если для каждого из ее детей выполняется одно из двух условий:
- ребенок не является пронзающей вершиной.
- ребенок является пронзающим, но содержит меньшую часть , чем рассматриваемая вершина.
На рисунке среди вершин 3, 4, 5, 6 только 5 является критической.
Вместо поиска всех пронзающих вершин, для решения задачи достаточно найти все критические вершины. Пусть
— радиус описанной вокруг окружности.Лемма (Об упаковке): |
Количество критических вершин на нулевом уровне дерева равно . |
Доказательство: |
Рассмотрим квадродерево , состоящее только из критических вершин. Назовем вершину ветвящейся, если у нее есть как минимум два ребенка. Не ветвящаяся вершина — лист или такая, что ее единственный ребенок содержит меньшую часть -области. Две вершины квадродерева покрывают разные области (не обязательно непересекающиеся), только если они пересекают границу в разных местах. Поэтому они покрывают разные области .Таким образом, для каждой неветвящейся вершины существует уникальная область Итоговое количество неветвящихся вершин в , покрываемая только этой вершиной и никакой другой. Объем этой области составляет , так как каждая критическая вершина — гиперкуб. равно , так как объем равен . Так как в нашем дереве все вершины являются критическими, то лемма доказана. |
Алгоритм
Начинаем отвечать на запрос с корня
и определяем тип вершин.- Если вершина внутренняя, добавляем ее в ответ вместе с поддеревом.
- Если внешняя, то игнорируем.
- Если критическая, то рассмотрим всех ее детей.
- Если не критическая, то найдем минимальную критическую, содержащую ту же часть , что и рассматриваемая вершина.
Первые три варианта рассматриваются тривиально. Покажем, как для данной некритической вершины
найти минимальную критическую вершину , содержащую ту же часть , что и . Для это найдем такое , что будет критической вершиной в при максимальном . И будем действовать аналогично процессу локализации.Таким образом, поиск
займет времени. А так как критических вершин всего , то итоговая ассимптотика составит .Псевдокод
void points_in_rectangle(rectangle R, rectangle E, vector<point>& points) queue<node> que que.push(.root) while (!que.empty()) node n = que.pop() rectangle K // прямоугольник, соответсвующий вершине n if (R K == ) continue else if (n is leaf) if (n.point in R) points.push_back(n.point) else if (K E) n.add_subtree(points) // добавляем все точки поддерева внутренней вершины else if (n is not critical) node q // некритическая вершина на максимальном уровне i, соответствующая n while (true) if (q is not critical) q = ребенок q, содержащий ту же область E, что и q else if (i != 0) q = такая же вершина на уровень ниже else break else que.add_all(n.children)