Свойства перечислимых языков. Теорема Успенского-Райса — различия между версиями
(→Источники информации) |
(→Теорема Успенского-Райса) |
||
Строка 30: | Строка 30: | ||
Рассмотрим вспомогательную программу: | Рассмотрим вспомогательную программу: | ||
<tex>g_{i,x}(y):</tex> | <tex>g_{i,x}(y):</tex> | ||
− | if U(i, x) == 1 | + | '''if''' U(i, x) == 1 |
'''return''' <tex>p_X(y)</tex> | '''return''' <tex>p_X(y)</tex> | ||
− | else | + | '''else''' |
− | while | + | while '''true''' |
Нетрудно понять, что в разумной модели вычислений номер этой программы можно вычислить по данным <tex>i</tex> и <tex>x</tex>. Значит, можно рассмотреть такую программу: | Нетрудно понять, что в разумной модели вычислений номер этой программы можно вычислить по данным <tex>i</tex> и <tex>x</tex>. Значит, можно рассмотреть такую программу: |
Версия 18:03, 12 декабря 2014
Определения
Рассмотрим множество всех перечислимых языков .
Определение: |
Свойством языков называется множество | .
Определение: |
Свойство называется тривиальным, если | или .
Определение: |
Язык свойства | — множество программ, языки которых обладают этим свойством: .
Определение: |
Свойство разрешимым. | называется разрешимым, если является
Теорема Успенского-Райса
Теорема: |
Язык никакого нетривиального свойства не является разрешимым. |
Доказательство: |
Приведём доказательство от противного. Предположим, что разрешимо и нетривиально, — программа, разрешающая .Не умаляя общности, можно считать, что (в противном случае перейдём к , которое также будет разрешимым и нетривиальным).Поскольку непусто, то найдётся перечислимый язык . Пусть — полуразрешитель .Рассмотрим вспомогательную программу: if U(i, x) == 1 return else while true Нетрудно понять, что в разумной модели вычислений номер этой программы можно вычислить по данным и . Значит, можно рассмотреть такую программу:return Заметим, что Следовательно,— программа, разрешающая универсальное множество. Получили противоречие. |
Источники информации
- Rice, H. G. "Classes of Recursively Enumerable Sets and Their Decision Problems." Trans. Amer. Math. Soc. 74, 358-366, 1953.
- Wikipedia — Rice's theorem
- Хопкрофт Д., Мотванн Р., Ульманн Д. Введение в теорию автоматов, языков и вычислений.