Теорема Понтрягина-Куратовского — различия между версиями
Строка 23: | Строка 23: | ||
Среди всех укладок графа <math>G'</math> на плоскости и среди всех циклов <math>C</math>, содержащих <math>a</math> и <math>b</math>, зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом <math>C</math>, лежит максимальное возможное число граней графа <math>G'</math>. Зафиксируем один из обходов по циклу <math>C</math> (на рисунках будем рассматривать обход по часовой стрелке по циклу <math>C</math>). Для вершин <math>u</math> и <math>v</math> цикла <math>C</math> через <math>C[u,v]</math> будем обозначать простую <math>(u,v)</math>-цепь, идущую по циклу <math>C</math> от <math>u</math> до <math>v</math> в направлении обхода цикла. Конечно, <math>C[u,v] ≠ C[v,u]</math>. Положим <math>C(u,v) = C[u,v]\{u,v}</math>, т.е. <math>C(u,v)</math> получено из <math>C[u,v]</math> отбрасыванием вершин <math>u</math> и <math>v</math>. | Среди всех укладок графа <math>G'</math> на плоскости и среди всех циклов <math>C</math>, содержащих <math>a</math> и <math>b</math>, зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом <math>C</math>, лежит максимальное возможное число граней графа <math>G'</math>. Зафиксируем один из обходов по циклу <math>C</math> (на рисунках будем рассматривать обход по часовой стрелке по циклу <math>C</math>). Для вершин <math>u</math> и <math>v</math> цикла <math>C</math> через <math>C[u,v]</math> будем обозначать простую <math>(u,v)</math>-цепь, идущую по циклу <math>C</math> от <math>u</math> до <math>v</math> в направлении обхода цикла. Конечно, <math>C[u,v] ≠ C[v,u]</math>. Положим <math>C(u,v) = C[u,v]\{u,v}</math>, т.е. <math>C(u,v)</math> получено из <math>C[u,v]</math> отбрасыванием вершин <math>u</math> и <math>v</math>. | ||
− | {{Определение | + | {{Определение |
|definition = | |definition = | ||
Внешним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими снаружи от цикла <math>C</math>. | Внешним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими снаружи от цикла <math>C</math>. | ||
}} | }} | ||
− | {{Определение | + | {{Определение |
|definition = | |definition = | ||
Внешними компонентами будем называть компоненты связности внешнего графа. | Внешними компонентами будем называть компоненты связности внешнего графа. | ||
}} | }} | ||
В силу связности графа <math>G'</math> для любой внешней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>. | В силу связности графа <math>G'</math> для любой внешней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>. | ||
− | {{Определение | + | {{Определение |
|definition = | |definition = | ||
Внешними частями будем называть: | Внешними частями будем называть: | ||
Строка 38: | Строка 38: | ||
б) рёбра графа <math>G'</math>, лежащие снаружи от цикла <math>C</math> и соединяющие две вершины из <math>C</math>, вместе с инцидентными такому ребру вершинами. | б) рёбра графа <math>G'</math>, лежащие снаружи от цикла <math>C</math> и соединяющие две вершины из <math>C</math>, вместе с инцидентными такому ребру вершинами. | ||
}} | }} | ||
− | {{Определиние | + | {{Определиние |
|definition = | |definition = | ||
Внутренним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими внутри цикла <math>C</math>. | Внутренним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими внутри цикла <math>C</math>. | ||
}} | }} | ||
− | {{Определение | + | {{Определение |
|definition = | |definition = | ||
Внутренними компонентами будем называть компоненты связности внутреннего графа. | Внутренними компонентами будем называть компоненты связности внутреннего графа. | ||
}} | }} | ||
В силу связности графа <math>G'</math> для любой внутренней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>. | В силу связности графа <math>G'</math> для любой внутренней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>. | ||
− | {{Определение | + | {{Определение |
|definition = | |definition = | ||
Внутренними частями будем называть: | Внутренними частями будем называть: | ||
Строка 54: | Строка 54: | ||
}} | }} | ||
Будем говорить, что внешняя (внутренняя) часть ''встречает цикл'' <math>C</math> в своих точках прикрепления к циклу <math>C</math>. | Будем говорить, что внешняя (внутренняя) часть ''встречает цикл'' <math>C</math> в своих точках прикрепления к циклу <math>C</math>. | ||
− | {{Утверждение 5 | + | {{Утверждение 5 |
|statement = | |statement = | ||
Любая внешняя часть встречает цикл <math>C</math> точно в двух точках, одна из которых лежит в <math>C(a,b)</math>, а другая - в <math>C(b,a)</math>. | Любая внешняя часть встречает цикл <math>C</math> точно в двух точках, одна из которых лежит в <math>C(a,b)</math>, а другая - в <math>C(b,a)</math>. | ||
Строка 62: | Строка 62: | ||
Итого, внешняя часть встречает цикл <math>C</math> хотя бы в двух точках, никакие две из которых не лежат в <math>C[a,b]</math> и <math>C[b,a]</math>. То есть ровно одна лежит в <math>C[a,b]</math> и ровно одна - в <math>C[b,a]</math>. | Итого, внешняя часть встречает цикл <math>C</math> хотя бы в двух точках, никакие две из которых не лежат в <math>C[a,b]</math> и <math>C[b,a]</math>. То есть ровно одна лежит в <math>C[a,b]</math> и ровно одна - в <math>C[b,a]</math>. | ||
}} | }} | ||
− | {{Определение | + | {{Определение |
|definition = | |definition = | ||
Ввиду утверждения 5 будем говорить, что любая внешняя часть является <math>(a,b)</math>-разделяющей частью, поскольку она встречает и <math>C(a,b)</math>, и <math>C(b,a)</math>. | Ввиду утверждения 5 будем говорить, что любая внешняя часть является <math>(a,b)</math>-разделяющей частью, поскольку она встречает и <math>C(a,b)</math>, и <math>C(b,a)</math>. | ||
}} | }} | ||
Аналогично можно ввести понятие <math>(a,b)</math>-разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл <math>C</math>, вообще говоря, более чем в двух точках, но не менее чем в двух точках. | Аналогично можно ввести понятие <math>(a,b)</math>-разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл <math>C</math>, вообще говоря, более чем в двух точках, но не менее чем в двух точках. | ||
− | {{Утверждение 6 | + | {{Утверждение 6 |
|statement = | |statement = | ||
Существует хотя бы одна <math>(a,b)</math>-разделяющая внутренняя часть. | Существует хотя бы одна <math>(a,b)</math>-разделяющая внутренняя часть. | ||
Строка 73: | Строка 73: | ||
Пусть, от противного, таких частей нет. Тогда, выходя из <math>a</math> внутри области, ограниченной <math>C</math>, и двигаясь вблизи от <math>C</math> по направлению обхода <math>C</math> и вблизи от встречающиъся внутренних частей, можно уложить ребро <math>e = ab</math> внутри цикла <math>C</math>, т.е. <math>G</math> - планарный граф, что невозможно. | Пусть, от противного, таких частей нет. Тогда, выходя из <math>a</math> внутри области, ограниченной <math>C</math>, и двигаясь вблизи от <math>C</math> по направлению обхода <math>C</math> и вблизи от встречающиъся внутренних частей, можно уложить ребро <math>e = ab</math> внутри цикла <math>C</math>, т.е. <math>G</math> - планарный граф, что невозможно. | ||
}} | }} | ||
− | {{Утверждение 7 | + | {{Утверждение 7 |
|statement = | |statement = | ||
Существует внешняя часть, встречающая <math>C(a,b)</math> в точке <math>c</math> и <math>C(b,a)</math> - в точке <math>d</math>, для которой найдётся внутренняя часть, являющаяся одновременно <math>(a,b)</math>-разделяющей и <math>(c,d)</math>-разделяющей. | Существует внешняя часть, встречающая <math>C(a,b)</math> в точке <math>c</math> и <math>C(b,a)</math> - в точке <math>d</math>, для которой найдётся внутренняя часть, являющаяся одновременно <math>(a,b)</math>-разделяющей и <math>(c,d)</math>-разделяющей. |
Версия 06:54, 20 октября 2010
Теорема: | ||||||||||||
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных , и не содержит подграфов, гомеоморфных . | ||||||||||||
Доказательство: | ||||||||||||
СодержаниеНеобходимостьНеобходимость условия очевидна. ДостаточностьОт противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных или . Пусть - такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин.G связенЕсли не связен, то его компоненты связности планарны и, следовательно, сам граф планарен.G - обыкновенный графВ самом деле, пусть в графе есть петля или кратное ребро . Тогда граф планарен. Добавляя ребро к графу получим, что граф он планарен.G - блокПусть, от противного, в графе есть точка сочленения . Через обозначим подграф графа , порождённый вершинами одной из компонент связности графа и вершинной , а через подграф графа , порождённый вершинами остальных компонент связности графа и вершиной . (рис. 1)Возьмём укладку графа на плоскости такую, что вершина лежит на границе верхней грани. Затем во внешней грани графа возьмём укладку графа такую, что вершина будет представлена на плоскости в двух экземплярах. (рис. 2)Соединим два экземпляра вершины пучком жордановых линий, не допуская лишних пересечений с укладками графов и , состоящим из такого количества линий, какова степень вершины в графе . Далее отбросим вхождение вершины в граф , заменяя инцидентные её рёбра на жордановы линии, полученные из линий указанного пучка и рёбер (рис. 3)Таким образом мы получили укладку графа на плоскости, что невозможно.
В силу связности графа для любой внешней компоненты должны существовать рёбра в , соединяющие её с вершинами цикла .
В силу связности графа для любой внутренней компоненты должны существовать рёбра в , соединяющие её с вершинами цикла .
Будем говорить, что внешняя (внутренняя) часть встречает цикл Шаблон:Утверждение 5 в своих точках прикрепления к циклу .
Аналогично можно ввести понятие Шаблон:Утверждение 6 Шаблон:Утверждение 7 -разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл , вообще говоря, более чем в двух точках, но не менее чем в двух точках.Разбор случаев взаимного положения a, b, c, d, u1, u2, v1, v2Рассмотрим 2 случая. 1. Пусть пара вершин 2. Пусть пара вершин 2.1. Пусть 2.1.1 Пусть 2.1.2. Пусть 2.1.3. Пусть Теперь рассмотрим случаи, когда хотя бы одна из вершин 2.2. Пусть 2.2.1. Пусть 2.2.2. Пусть 2.2.3. Пусть 2.3. Пусть 2.3.1. Пусть цепи 2.3.2. Пусть цепи | ||||||||||||
Литература
- Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы