Свойства перечислимых языков. Теорема Успенского-Райса — различия между версиями
(→См. также) |
|||
Строка 75: | Строка 75: | ||
== См. также == | == См. также == | ||
[[Теорема о рекурсии]] | [[Теорема о рекурсии]] | ||
+ | [[Теорема Райса-Шапиро]] | ||
+ | |||
== Источники информации == | == Источники информации == | ||
* [https://en.wikipedia.org/wiki/Rice%27s_theorem Wikipedia — Rice's theorem] | * [https://en.wikipedia.org/wiki/Rice%27s_theorem Wikipedia — Rice's theorem] |
Версия 12:29, 13 декабря 2014
Свойства языков
Рассмотрим множество всех перечислимых языков .
Определение: |
Свойством языков (англ. property of languages) называется множество | .
Пример.
Свойство языка, язык содержит слова hello.
Определение: |
Свойство называется тривиальным (англ. trivial), если | или .
Псевдокод для
p(A) return false
Псевдокод для
.p(A) return true
Определение: |
Язык свойства (англ. language of property) | — множество программ, языки которых обладают этим свойством: .
Пример. Пусть
— разрешитель некоторого языкаp() return ('hello')
Определение: |
Свойство разрешимым. | называется разрешимым (англ. recursive), если является
Теорема Успенского-Райса
Теорема: |
Язык никакого нетривиального свойства не является разрешимым. |
Доказательство: |
Приведём доказательство от противного. Предположим, что разрешимо и нетривиально, — программа, разрешающая .Не умаляя общности, можно считать, что (в противном случае перейдём к , которое также будет разрешимым и нетривиальным, так как != и != . Исключение пустого множества нам нужно чтобы различать и пустое (при построении функции .Поскольку непусто, то найдётся перечислимый язык . Пусть — полуразрешитель .Рассмотрим вспомогательную программу: — универсальная функцияif U(i, x) == 1 //если i на входе x выдает 1 return else while true Нетрудно понять, что в разумной модели вычислений номер этой программы можно вычислить по данным и . Значит, можно рассмотреть такую программу:return Заметим, что Следовательно,— программа, разрешающая универсальное множество. Получили противоречие. |
См. также
Теорема о рекурсии Теорема Райса-Шапиро
Источники информации
- Wikipedia — Rice's theorem
- Rice, H. G. "Classes of Recursively Enumerable Sets and Their Decision Problems." Trans. Amer. Math. Soc. 74, 358-366, 1953.
- Хопкрофт Д., Мотванн Р., Ульманн Д. Введение в теорию автоматов, языков и вычислений страница 397.