Свойства перечислимых языков. Теорема Успенского-Райса — различия между версиями
(→Теорема Успенского-Райса) |
(→Свойства языков) |
||
Строка 14: | Строка 14: | ||
Псевдокод для <tex> A = \varnothing </tex> | Псевдокод для <tex> A = \varnothing </tex> | ||
p_A(p_X) | p_A(p_X) | ||
− | '''return L(p_X) \in A | + | '''return <tex>L(p_X) \in A</tex> |
Псевдокод для <tex> A = \mathrm {RE} </tex>. | Псевдокод для <tex> A = \mathrm {RE} </tex>. | ||
− | p(A) | + | <tex>p(A)</tex> |
'''return''' ''true'' | '''return''' ''true'' | ||
{{Определение | {{Определение |
Версия 12:59, 14 декабря 2014
Свойства языков
Рассмотрим множество всех перечислимых языков .
Определение: |
Свойством языков (англ. property of languages) называется множество | .
Примеры свойств:
- Язык должен содержать слово hello.
- Язык должен содержать хотя бы одно простое число.
Определение: |
Свойство называется тривиальным (англ. trivial), если | или .
Псевдокод для
p_A(p_X)
return
Псевдокод для
.
return true
Определение: |
Язык свойства (англ. language of property) | — множество программ, языки которых обладают этим свойством: .
Пример. Пусть
— разрешитель некоторого языкаp() return ('hello')
Определение: |
Свойство разрешимым. | называется разрешимым (англ. recursive), если является
Теорема Успенского-Райса
Теорема: |
Язык никакого нетривиального свойства не является разрешимым. |
Доказательство: |
Приведём доказательство от противного. Предположим, что разрешимо и нетривиально, — программа, разрешающая .Не умаляя общности, можно считать, что (в противном случае перейдём к , которое также будет разрешимым и нетривиальным, так как и .Поскольку непусто, то найдётся перечислимый язык . Пусть — полуразрешитель .Рассмотрим вспомогательную программу: — универсальная функцияif == 1 // если i (где i - это программа), на входе x выдает 1. return else while true Нетрудно понять, что в разумной модели вычислений номер этой программы можно вычислить по данным и . Значит, можно рассмотреть такую программу:return Заметим, что Исключение пустого множества нам нужно чтобы различать Следовательно, и пустое.— программа, разрешающая универсальное множество. Получили противоречие. |
См. также
Источники информации
- Wikipedia — Rice's theorem
- Rice, H. G. "Classes of Recursively Enumerable Sets and Their Decision Problems." Trans. Amer. Math. Soc. 74, 358-366, 1953.
- Хопкрофт Д., Мотванн Р., Ульманн Д. Введение в теорию автоматов, языков и вычислений страница 397.