Троичный сумматор — различия между версиями
Строка 67: | Строка 67: | ||
''sum'' — сумма по модулю 3, несимметричная. | ''sum'' — сумма по модулю 3, несимметричная. | ||
+ | ==Троичный вычитатель== | ||
+ | Полный троичный одноразрядный вычитатель является неполной тринарной троичной логической функцией, так как в разряде займа только два значения 0 и 1. Результат имеет длину 1 и 2/3 троичных разряда. | ||
+ | Результат изменяется при перемене мест операндов. | ||
+ | {|align="left" style="width:10cm" border=1 | ||
+ | |+ | ||
+ | |-align="left" | ||
+ | ! <tex>x_1=x</tex>||<tex>2</tex>||<tex>2</tex>||<tex>2</tex>||<tex>1</tex> || <tex>1</tex> || <tex>1</tex> || <tex>0</tex> || <tex>0</tex> || <tex>0</tex> | ||
+ | |-align="left" | ||
+ | | <tex>x_0=y</tex>||<tex>2</tex>||<tex>1</tex>||<tex>0</tex>||<tex>2</tex> || <tex>1</tex> || <tex>0</tex> || <tex>2</tex> || <tex>1</tex> || <tex>0</tex> | ||
+ | |-align="left" | ||
+ | | <tex>transfer</tex>||<tex>1</tex>||<tex>1</tex>||<tex>0</tex>||<tex>1</tex>||<tex>0</tex> || <tex>0</tex> || <tex>0</tex> || <tex>0</tex> || <tex>0</tex> | ||
+ | |-align="left" | ||
+ | | <tex>sum</tex>||<tex>1</tex>||<tex>0</tex>||<tex>2</tex>||<tex>0</tex>|| <tex>2</tex> || <tex>1</tex> || <tex>2</tex> || <tex>1</tex> || <tex>0</tex> | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | В разряде займа не бывает третьего значения троичного разряда (2), так как в «худшем» случае <tex>0_{10} - 2_{10} - 2_{10} = -4_{10} = -11_3</tex>, то есть в старшем разряде «1». Единица займа возникает в 9-ти случаях из 18. | ||
==Источники информации== | ==Источники информации== | ||
* [https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%BE%D0%B8%D1%87%D0%BD%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8 Некоторые троичные схемы] | * [https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%BE%D0%B8%D1%87%D0%BD%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8 Некоторые троичные схемы] | ||
* [https://ru.wikipedia.org/wiki/%D0%A1%D1%83%D0%BC%D0%BC%D0%B0%D1%82%D0%BE%D1%80#cite_note-9 Различные сумматоры] | * [https://ru.wikipedia.org/wiki/%D0%A1%D1%83%D0%BC%D0%BC%D0%B0%D1%82%D0%BE%D1%80#cite_note-9 Различные сумматоры] |
Версия 23:19, 26 декабря 2014
Определение: |
Функциональная схема (англ. Functional Flow Block Diagram) — документ, разъясняющий процессы, протекающие в отдельных функциональных цепях изделия (установки) или изделия (установки) в целом. Функциональная схема является экспликацией (поясняющим материалом) отдельных видов процессов, протекающих в целостных функциональных блоках и цепях устройства. |
Содержание
Принципы построения функциональной схемы
Функциональная схема — вид графической модели изделия. Их использование и построение позволяет наглядно отразить устройство функциональных (рабочих) изменений, описание которых оперирует любыми (в том числе и несущественными) микросхемами, БИС и СБИС. Поскольку функциональные схемы не имеют собственной системы условных обозначений, их построение допускает сочетание кинематических, электрических и алгоритмических обозначений (для таких схем более подходящим термином оказывается комбинированные схемы).
Троичный полусумматор с одним неполным слагаемым
Первая ступень полного троичного сумматора.
Для сложения одного троичного разряда с разрядом переноса.
Результат не изменяется при перемене мест операндов.
transfer содержит разряд переноса, sum содержит сумму по модулю 3.
Результат операции занимает 1 и 2/3 троичных разряда.
Троичный полусумматор в несимметричной троичной системе счисления
Троичное логическое сложение двух троичных разрядов с разрядом переноса в несимметричной троичной системе счисления.
Результат не изменяется при перемене мест операндов.
Троичный полусумматор можно рассматривать, как объединение двух бинарных троичных функций: «логического сложения по модулю 3 в троичной несимметричной системе счисления» и «разряд переноса при сложении двух полных троичных разрядов в троичной несимметричной системе счисления».
В отличие от предыдущих бинарных троичных функций с одноразрядным результатом, результат функции занимает 1 и 2/3 троичных разрядов, так как при сложении в троичной несимметричной системе в разряде переноса не бывает значения больше единицы.
transfer — перенос в n + 1, несимметричный.
sum — сумма по модулю 3, несимметричная.
Троичный вычитатель
Полный троичный одноразрядный вычитатель является неполной тринарной троичной логической функцией, так как в разряде займа только два значения 0 и 1. Результат имеет длину 1 и 2/3 троичных разряда. Результат изменяется при перемене мест операндов.
В разряде займа не бывает третьего значения троичного разряда (2), так как в «худшем» случае
, то есть в старшем разряде «1». Единица займа возникает в 9-ти случаях из 18.