Троичный сумматор — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 105: Строка 105:
 
|}
 
|}
 
''transfer'' содержит разряд переноса, ''sum'' содержит сумму по модулю <tex>3</tex>.
 
''transfer'' содержит разряд переноса, ''sum'' содержит сумму по модулю <tex>3</tex>.
 
Результат операции занимает <tex>1</tex> и <tex>2/3</tex> троичных разряда.
 
  
 
== Троичный полусумматор в несимметричной троичной системе счисления ==
 
== Троичный полусумматор в несимметричной троичной системе счисления ==
Строка 114: Строка 112:
  
 
Троичный полусумматор можно рассматривать, как объединение двух бинарных троичных функций: «логического сложения по модулю <tex>3</tex> в троичной несимметричной системе счисления» и «разряд переноса при сложении двух полных троичных разрядов в троичной несимметричной системе счисления».
 
Троичный полусумматор можно рассматривать, как объединение двух бинарных троичных функций: «логического сложения по модулю <tex>3</tex> в троичной несимметричной системе счисления» и «разряд переноса при сложении двух полных троичных разрядов в троичной несимметричной системе счисления».
 
В отличие от предыдущих бинарных троичных функций с одноразрядным результатом, результат функции занимает <tex>1</tex> и <tex>2/3</tex> троичных разрядов, так как при сложении в троичной несимметричной системе в разряде переноса не бывает значения больше единицы.
 
  
 
{| style="background-color:#CCC;margin:0.5px"
 
{| style="background-color:#CCC;margin:0.5px"
Строка 167: Строка 163:
  
 
== Полное троичное логическое сложение с переносом в несимметричной троичной системе счисления ==
 
== Полное троичное логическое сложение с переносом в несимметричной троичной системе счисления ==
Полный троичный одноразрядный сумматор является неполной тернарной троичной логической функцией, так как в разряде переноса только два значения <tex>0</tex> и <tex>1</tex>. В отличие от предыдущих троичных тернарных функций с одноразрядным результатом, результат имеет длину <tex>1</tex> и <tex>2/3</tex> троичных разряда.
+
Полный троичный одноразрядный сумматор является неполной тернарной троичной логической функцией, так как в разряде переноса только два значения <tex>0</tex> и <tex>1</tex>.
 +
 
 
Результат не изменяется при перемене мест операндов.
 
Результат не изменяется при перемене мест операндов.
 
{| style="background-color:#CCC;margin:0.5px"
 
{| style="background-color:#CCC;margin:0.5px"
Строка 270: Строка 267:
 
|style="background-color:#FFF;padding:2px 10px"| <tex>0</tex>
 
|style="background-color:#FFF;padding:2px 10px"| <tex>0</tex>
 
|}
 
|}
В разряде переноса не бывает третьего значения троичного разряда <tex>(2)</tex>, так как в «худшем» случае <tex>2_{10}+2_{10}+1_{10}=5_{10}=12_3</tex>, то есть в старшем разряде <tex>«1»</tex>. Единица переноса возникает в <tex>9</tex>-ти случаях из <tex>18</tex>.
 
Как в двоичной логике двоичный тернарный полный сумматор заменяется двумя бинарными полусумматорами, так и в троичной логике троичный тернарный полный сумматор можно заменить на два троичных бинарных полусумматора, только с той разницей, что два двоичных бинарных полусумматора одинаковые, а два троичных бинарных полусумматора разные.
 
 
1. Один полусумматор полный бинарный («сложение двух полных троичных разрядов»). Второй полусумматор — не полный бинарный («сложение одного полного троичного разряда с неполным троичным разрядом (с <tex>2/3</tex> от полного троичного разряда)»), так как в разряде переноса не бывает значений больших чем <tex>«1»</tex>.
 
  
2. Один неполный бинарный «сложение <tex>1</tex> троичного разряда с <tex>2/3</tex> троичного разряда». Второй бинарный несимметричный «сложение <tex>1</tex> троичного разряда с <tex>1</tex> и <tex>2/3</tex> троичного разряда». Результат — двухразрядный длиной <tex>1</tex> и <tex>2/3</tex> троичных разряда.
 
 
== См. также ==
 
== См. также ==
 
* [[Двоичный каскадный сумматор]]
 
* [[Двоичный каскадный сумматор]]

Версия 18:15, 30 декабря 2014

В троичной логике "лжи" и "истине" соответствует [math]-[/math] и [math]+[/math]. Третьему состоянию соответствует [math]0[/math].

Мы будем рассматривать простую троичную функциональную схему — троичный сумматор. Поэтому, вместо обозначений [math]\{-, 0, +\}[/math], мы используем [math]\{0, 1, 2\}[/math] (несимметричная троичная система счисления).

Составные части полусумматора

Полусумматор состоит из двух частей: сложения по модулю [math]3[/math] и переноса в следующий разряд.

Логическое сложение по модулю [math]3[/math] при одном неполном слагаемом

Для сложения одного троичного разряда с разрядом переноса.

Результат не меняется при перемене мест операндов.

[math]\bf{x_1=x}[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{x_0=y}[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{z}[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]2[/math] [math]1[/math] [math]0[/math]

Разряд переноса при сложении с неполным слагаемым

Для сложения одного троичного разряда с разрядом переноса.

Результат не изменяется при перемене мест операндов.

[math]\bf{x_1=x}[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{x_0=y}[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{z}[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]

Троичный полусумматор с одним неполным слагаемым

Первая ступень полного троичного сумматора.

Для сложения одного троичного разряда с разрядом переноса.

Результат не изменяется при перемене мест операндов.

[math]\bf{x_1=x}[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{x_0=y}[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{z_{sum}}[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{z_{transfer}}[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]

transfer содержит разряд переноса, sum содержит сумму по модулю [math]3[/math].

Троичный полусумматор в несимметричной троичной системе счисления

Троичное логическое сложение двух троичных разрядов с разрядом переноса в несимметричной троичной системе счисления.

Результат не изменяется при перемене мест операндов.

Троичный полусумматор можно рассматривать, как объединение двух бинарных троичных функций: «логического сложения по модулю [math]3[/math] в троичной несимметричной системе счисления» и «разряд переноса при сложении двух полных троичных разрядов в троичной несимметричной системе счисления».

[math]\bf{x_1=x}[/math] [math]2[/math] [math]2[/math] [math]2[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{x_0=y}[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{z_{sum}}[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{z_{transfer}}[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]2[/math] [math]1[/math] [math]0[/math]

transfer — перенос в следующий разряд, несимметричный.

sum — сумма по модулю [math]3[/math], несимметричная.

Полное троичное логическое сложение с переносом в несимметричной троичной системе счисления

Полный троичный одноразрядный сумматор является неполной тернарной троичной логической функцией, так как в разряде переноса только два значения [math]0[/math] и [math]1[/math].

Результат не изменяется при перемене мест операндов.

[math]\bf{x_0}[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{x_1}[/math] [math]2[/math] [math]2[/math] [math]2[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]2[/math] [math]2[/math] [math]2[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{x_2}[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{z_{sum}}[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{z_{transfer}}[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]

См. также

Источники информации