Троичный сумматор — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 275: Строка 275:
  
 
* [https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%BE%D0%B8%D1%87%D0%BD%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8 Википедия — Некоторые троичные схемы]
 
* [https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%BE%D0%B8%D1%87%D0%BD%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8 Википедия — Некоторые троичные схемы]
* [https://ru.wikipedia.org/wiki/%D0%A1%D1%83%D0%BC%D0%BC%D0%B0%D1%82%D0%BE%D1%80#cite_note-9 Википедия — Различные сумматоры]
+
* [https://ru.wikipedia.org/wiki/%D0%A1%D1%83%D0%BC%D0%BC%D0%B0%D1%82%D0%BE%D1%80 Википедия — Различные сумматоры]
  
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
  
 
[[Категория: Схемы из функциональных элементов ]]
 
[[Категория: Схемы из функциональных элементов ]]

Версия 18:47, 30 декабря 2014

В троичной логике "лжи" и "истине" соответствует [math]-[/math] и [math]+[/math]. Третьему состоянию соответствует [math]0[/math].

Мы будем рассматривать простую троичную функциональную схему — троичный сумматор. Поэтому, вместо обозначений [math]\{-, 0, +\}[/math], мы используем [math]\{0, 1, 2\}[/math] (несимметричная троичная система счисления).

Составные части полусумматора

Полусумматор состоит из двух частей: сложения по модулю [math]3[/math] и переноса в следующий разряд.

Логическое сложение по модулю [math]3[/math] при одном неполном слагаемом

Для сложения одного троичного разряда с разрядом переноса.

Результат не меняется при перемене мест операндов.

[math]\bf{x_1=x}[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{x_0=y}[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{z}[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]2[/math] [math]1[/math] [math]0[/math]

Разряд переноса при сложении с неполным слагаемым

Для сложения одного троичного разряда с разрядом переноса.

Результат не изменяется при перемене мест операндов.

[math]\bf{x_1=x}[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{x_0=y}[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{z}[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]

Троичный полусумматор с одним неполным слагаемым

Первая ступень полного троичного сумматора.

Для сложения одного троичного разряда с разрядом переноса.

Результат не изменяется при перемене мест операндов.

[math]\bf{x_1=x}[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{x_0=y}[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{z_{sum}}[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{z_{transfer}}[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]

transfer содержит разряд переноса, sum содержит сумму по модулю [math]3[/math].

Троичный полусумматор в несимметричной троичной системе счисления

Троичное логическое сложение двух троичных разрядов с разрядом переноса в несимметричной троичной системе счисления.

Результат не изменяется при перемене мест операндов.

Троичный полусумматор можно рассматривать, как объединение двух бинарных троичных функций: «логического сложения по модулю [math]3[/math] в троичной несимметричной системе счисления» и «разряд переноса при сложении двух полных троичных разрядов в троичной несимметричной системе счисления».

[math]\bf{x_1=x}[/math] [math]2[/math] [math]2[/math] [math]2[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{x_0=y}[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{z_{sum}}[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{z_{transfer}}[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]2[/math] [math]1[/math] [math]0[/math]

transfer — перенос в следующий разряд, несимметричный.

sum — сумма по модулю [math]3[/math], несимметричная.

Полное троичное логическое сложение с переносом в несимметричной троичной системе счисления

Полный троичный одноразрядный сумматор является неполной тернарной троичной логической функцией, так как в разряде переноса только два значения [math]0[/math] и [math]1[/math].

Результат не изменяется при перемене мест операндов.

[math]\bf{x_0}[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{x_1}[/math] [math]2[/math] [math]2[/math] [math]2[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]2[/math] [math]2[/math] [math]2[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{x_2}[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\bf{z_{sum}}[/math] [math]2[/math] [math]1[/math] [math]0[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]2[/math] [math]0[/math] [math]2[/math] [math]1[/math] [math]2[/math] [math]1[/math] [math]0[/math]
[math]\bf{z_{transfer}}[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]1[/math] [math]1[/math] [math]0[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math]

См. также

Источники информации