|
|
Строка 1: |
Строка 1: |
− | == Алгоритм ==
| + | #перенаправление [[Алгоритм Флойда]] |
− | Сформулируем нашу задачу в терминах графов: рассмотрим граф <tex>G=(V,\; E),\; |V| = n</tex>, соответствующий отношению <tex>R</tex>. Тогда необходимо найти все пары вершин <tex>(x, y) </tex>, соединенных некоторым путем.
| |
− | Иными словами, требуется построить новое отношение <tex>T</tex>, которое будет состоять из всех пар <tex>(x, y) </tex> таких, что найдется последовательность <tex>x = x_0, x_1, \dots, x_k = y </tex>, где <tex> (x_{i-1}, x_i) \in R, i = 1, 2, \dots, k </tex>.
| |
− | | |
− | === Псевдокод ===
| |
− | Изначально матрица <tex>W</tex> заполняется соответственно отношению <tex>R</tex>, то есть <tex>W[i][j] = [(i, j) \in R] </tex>. Затем внешним циклом перебираются все элементы <tex>k</tex> множества <tex>X</tex> и для каждого из них, если он может использоваться, как промежуточный для соединения двух элементов <tex>i</tex> и <tex>j</tex>, отношение <tex>T</tex> расширяется добавлением в него пары <tex>(i, j)</tex>.
| |
− | | |
− | for k = 1 to n
| |
− | for i = 1 to n
| |
− | for j = 1 to n
| |
− | W[i][j] = W[i][j] or (W[i][k] and W[k][j])
| |
− | === Доказательство ===
| |
− | <wikitex>Назовем ''промежуточной'' вершину некоторого пути $p = \left \langle v_0, v_1, \dots, v_k \right \rangle$, принадлежащую множеству вершин этого пути и отличающуюся от начальной и конечной вершин, то есть принадлежащую $\left \{ v_1, v_2, \dots, v_{k-1} \right \}$. Рассмотрим произвольную пару вершин $i, j \in V$ и все пути между ними, промежуточные вершины которых принадлежат множеству вершин с номерами $\left \{ 1, 2, \dots, k \right \}$. Пусть $p$ - некоторый из этих путей. Докажем по индукции (по числу промежуточных вершин в пути), что после $i$-ой итерации внешнего цикла будет верно утверждение - если в построенном графе между выбранной парой вершин есть путь, содержащий в качестве промежуточных только вершины из множества вершин с номерами $\left \{ v_1, v_2, \dots, v_{i} \right \}$, то между ними будет ребро.
| |
− | | |
− | * База индукции. Если у нас нет промежуточных вершин, что соответствует начальной матрице смежности, то утверждение выполнено: либо есть ребро (путь не содержит промежуточных вершин), либо его нет.
| |
− | * Индуктивный переход. Пусть предположение выполнено для $i = k - 1$. Докажем, что оно верно и для $i = k$ Рассмотрим случаи (далее под вершиной будем понимать ее номер для простоты изложения):
| |
− | ** $k$ не является промежуточной вершиной пути $p$. Тогда все его промежуточные пути принадлежат множеству вершин с номерами $\left \{ 1, 2, \dots, k-1 \right \} \subset \left \{ 1, 2, \dots, k \right \}$, то есть существует путь с промежуточными вершинами в исходном множестве. Это значит $W[i][j]$ будет истиной. В противном случае $W[i][j]$ будет ложью и на k-ом шаге ею и останется.
| |
− | ** $k$ является промежуточной вершиной предполагаемого пути $p$. Тогда этот путь можно разбить на два пути: $i \xrightarrow{p_1} k \xrightarrow{p_2} j$. Пусть как $p_1$, так и $p_2$ существуют. Тогда они содержат в качестве промежуточных вершины из множества $\left \{ 1, 2, \dots, k-1 \right \} \subset \left \{ 1, 2, \dots, k \right \}$ (так как вершина $k$ - либо конечная, либо начальная, то она не может быть в множестве по нашему определению). Тогда $W[i][k]$ и $W[k][j]$ истинны и по индуктивному предположению посчитаны верно. Тогда и $W[i][j]$ тоже истина. Пусть какого-то пути не существует. Тогда пути $p$ тоже не может существовать, так как добраться, например, от вершины $i$ до $k$ по вершинам из множества $\left \{ 1, 2, \dots, k \right \}$ невозможно по индуктивному предположению. Тогда вся конъюнкция будет ложной, то есть такого пути нет, откуда $W[i][j]$ после итерации будет ложью.
| |
− | | |
− | Таким образом, после завершения внешнего цикла у нас будет $W[i][j] = true$, если между этими вершинами есть путь, содержащий в качестве промежуточных вершин из множества всех остальных вершин графа, что и есть транзитивное замыкание.
| |
− | </wikitex>
| |
− | | |
− | === Сложность алгоритма ===
| |
− | Три вложенных цикла работают за время <tex>\sum\limits_{n}\sum\limits_{n}\sum\limits_{n}O(1) = O(n^3)</tex>,
| |
− | то есть алгоритм имеет кубическую сложность.
| |
− | | |
− | == Источники ==
| |
− | * Романовский И. В. Дискретный анализ: Учебное пособие для студентов, специализирующихся по прикладной математике и информатике. Изд. 3-е. — СПб.: Невский диалект, 2003. — 320 с. — ISBN 5-7940-0114-3.
| |
− | | |
− | [[Категория:Дискретная математика и алгоритмы]]
| |
− | [[Категория: Отношения ]]
| |