Определение измеримой функции — различия между версиями
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
[[Математический_анализ_2_курс|на главную <<]] [[Предельный переход в классе измеримых функций|>>]] | [[Математический_анализ_2_курс|на главную <<]] [[Предельный переход в классе измеримых функций|>>]] | ||
Версия 06:41, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Будем рассматривать пространство
, считаем, что мера — -конечная, полная, то есть:
Пусть
, будем обозначать как обладает свойством совокупность точек из , для которых свойство верно.
Определение: |
, — множества Лебега функции . |
Определение: |
сигма-алгебре). | называется измеримой по Лебегу, если для любого множества Лебега всех четырех типов измеримы (то есть, принадлежат
Утверждение (Измеримость по Лебегу): |
Функция измерима по Лебегу на для любого измеримо её множество Лебега одного любого фиксированного типа. |
Пусть — измеримо для любого . Установим измеримость остальных:
|
Используя ту же технику, легко установить, что из измеримости
на следует и измеримость самого ,Пример измеримой функции —
на измеримом .
Так как
измеримо, то постоянная функция на нём измерима.Всё это распространяется на
, — дизъюнктны.Аналогично, измерима на
функция , .Утверждение: |
Пусть — замкнутое множество, в есть мера . Тогда непрерывная функция — измерима. |
Установим измеримость .Проверим, что оно замкнуто. Рассмотрим последовательность , пусть она сходится к . По определению множества Лебега, .Так как — замкнутое, и , то предел тоже принадлежит . Значит, по непрерывности, .По непрерывности Множество содержит в себе пределы всех сходящихся подпоследовательностей, то есть замкнуто. Но, как было установлено ранее, замкнутые множества измеримы по Лебегу. , из того, что , следует , то есть, . |
Вывод: класс непрерывных функций содержится в классе измеримых.
Следует обратить внимание, что столь простые рассуждения проходят по той причине, что мы не интересуемся тем, как устроены множества Лебега. Нас интересует только одно их свойство — принадлежность
. Природа этих множеств может быть крайне сложной.Теорема: |
Пусть и измеримы на . Тогда
1) |
Доказательство: |
1 и 2) доказываются одинаково. Рассмотрим, например, .При оно может быть непустым. Но это равносильно .Это пересечение двух измеримых множеств Лебега измеримо.1.5) Если , то и она измерима как постоянная.Если , то , если же , то . Так как — измеримо, эти множества Лебега тоже измеримы.3) Доказывается чуть сложнее
Базируясь на том,что всюду плотно на оси,Тогда Это объединение пересечений измеримых множеств Лебега функций 4) Вытекает из прошлых: и , операций — счётное число. Значит, тоже измеримо. |