Алгоритм Касаи и др. — различия между версиями
KK (обсуждение | вклад) м (→Описание алгоритма и псевдокод) |
KK (обсуждение | вклад) (→Факт №1) |
||
| Строка 10: | Строка 10: | ||
==Некоторые свойства <tex>LCP</tex>== | ==Некоторые свойства <tex>LCP</tex>== | ||
===Факт №1=== | ===Факт №1=== | ||
| − | <tex>LCP</tex> между двумя суффиксами {{---}} это минимум <tex>LCP</tex> всех пар соседних суффиксов между ними в суффиксном массиве <tex>Suf</tex>. То есть <tex>LCP(S_{Suf[x]}, S_{Suf[z]}) = \min\limits_{x < y \leqslant z} | + | <tex>LCP</tex> между двумя суффиксами {{---}} это минимум <tex>LCP</tex> всех пар соседних суффиксов между ними в суффиксном массиве <tex>Suf</tex>. То есть <tex>LCP(S_{Suf[x]}, S_{Suf[z]}) = \min\limits_{x < y \leqslant z}LCP(S_{Suf[y - 1]},S_{Suf[y]})</tex>. |
Отсюда следует, что <tex>LCP</tex> пары соседних суффиксов в массиве <tex>Suf</tex> больше или равно <tex>LCP</tex> пары суффиксов, окружающих их. | Отсюда следует, что <tex>LCP</tex> пары соседних суффиксов в массиве <tex>Suf</tex> больше или равно <tex>LCP</tex> пары суффиксов, окружающих их. | ||
Версия 22:35, 13 апреля 2015
Алгоритм Касаи, Аримуры, Арикавы, Ли, Парка (англ. algorithm of Kasai, Arimura, Arikawa, Lee, Park) — алгоритм, позволяющий за линейное время вычислить длину наибольших общих префиксов (англ. longest common prefix, LCP) для соседних циклических сдвигов строки, отсортированных в лексикографическом порядке.
Содержание
Обозначения
Задана строка . Тогда — суффикс строки , начинающийся в -ом символе. Пусть задан суффиксный массив . Для вычисления будем использовать промежуточный массив . Массив определен как обратный к массиву . Он может быть получен немедленно, если задан массив . Если , то .
— длина наибольшего общего префикса и строк в суффиксном массиве ( и соответственно).
Некоторые свойства
Факт №1
между двумя суффиксами — это минимум всех пар соседних суффиксов между ними в суффиксном массиве . То есть . Отсюда следует, что пары соседних суффиксов в массиве больше или равно пары суффиксов, окружающих их.
| Утверждение: |
Факт №2
Если значение между парой суффиксов, соседних в массиве , больше , то можно удалить первый символ каждого суффикса и лексикографический порядок суффиксов сохранится.
| Утверждение: |
Если , тогда |
Факт №3
В этом же случае, значение между и на один меньше значения между и .
| Утверждение: |
Если , тогда |
Вспомогательные утверждения
Теперь рассмотрим следующую задачу: рассчитать между суффиксом и его соседним суффиксом в массиве , при условии, что значение между и его соседним суффиксом известны. Для удобства записи пусть и . Так же пусть и . Проще говоря, мы хотим посчитать , когда задано
| Лемма: |
Если , тогда |
| Доказательство: |
| Так как , имеем из факта №2. Так как , имеем из факта №1 |
| Теорема: |
Если , то |
| Доказательство: |
|
(из леммы) (из факта №3). Значит, |
Описание алгоритма и псевдокод
Таким образом, начиная проверять для текущего суффикса не с первого символа, а с указанного, можно за линейное время построить . Покажем, что построение таким образом действительно требует времени. Действительно, на каждой итерации текущее значение может быть не более чем на единицу меньше предыдущего. Таким образом, значения в сумме могут увеличиться не более, чем на (с точностью до константы). Следовательно, алгоритм построит за .
int[] buildLCP(str: string, suf: int[]) // str — исходная строка с добавленным специальным символом $
// suf[] — суффиксный массив строки str
int len str.length
int[len] lcp
int[len] pos // pos[] — массив, обратный массиву suf
for i = 0 to len - 1
pos[suf[i]] i
int k 0
for i = 0 to len - 1
if k > 0
k--
if pos[i] == len - 1
lcp[len - 1] -1
k 0
else
int j suf[pos[i] + 1]
while max(i + k, j + k) < len and str[i + k] == str[j + k]
k++
lcp[pos[i]] k
return lcp