Аксиоматизация матроида рангами — различия между версиями
(Отступы и форматирование) |
м (Приведено в соответствие с коррективами куратора.) |
||
Строка 1: | Строка 1: | ||
− | {{ | + | {{Лемма |
− | + | |statement=Пусть <tex> B \subset A \subseteq 2^X</tex>, <tex>r(B) = |B|</tex>, и <tex> A \setminus B = \{p_1, \ldots p_t\}</tex>. Если <tex>r(B \cup p_i) = |B|</tex> для любого <tex> i = 1, \ldots , t</tex>, то <tex>r(A) = |B|</tex> | |
− | |statement= Пусть | + | |proof= |
− | + | :По индукции: предположим, что <tex>r(B \cup p_1 \cup \ldots \cup p_j) = |B|</tex> для некоторого <tex>j = 1, \ldots ,t-1</tex>. Тогда, применяя (2) и (3), получаем: <br> | |
− | + | :<tex>|B| = r(B) \leqslant r(B \cup p_1 \cup \ldots \cup p_j+1) \leqslant r(B \cup p_1 \cup \ldots \cup p_j) + r(B \cup p_j+1) -r(B) = |B| + |B| - |B| = |B| </tex>. <br> | |
− | + | :Следовательно, <tex>r(B \cup p_1 \cup \ldots \cup p_j+1) = |B|</tex>. Переход доказан, а значит, <tex>r(B \cup p_1 \cup \ldots \cup p_t) = |B|</tex>. <br> | |
− | + | }} | |
− | |||
− | |||
− | + | {{Теорема | |
− | + | |about= об аксиоматизации матроида рангами | |
− | + | |statement= Пусть некоторая функция <tex>r: 2^X \to \{0\} \cup \mathbb{N}</tex>, где <tex>2^X</tex> {{---}} конечное непустое множество, удовлетворяет условиям: <br> | |
+ | # <tex> 0 \leqslant r(A) \leqslant |A| </tex>. | ||
+ | # <tex> A \in B \to r(A) \leqslant r(B) </tex>. | ||
+ | # <tex>\forall A, B \subset X,</tex> <tex>r(A \cup B) + r(A \cap B) \leqslant r(A) + r(B)</tex> <br> | ||
+ | Тогда <tex>r</tex> является [[Ранговая функция, полумодулярность|ранговой функцией]] однозначно определенного матроида на <tex>X</tex>. <br> | ||
+ | |proof= Подмножество <tex>I \subseteq 2^X</tex> назовем <tex>r</tex>-независимым, если выполняется <tex>r(I) = |I|</tex>. Обозначим через <tex>\mathcal{I}</tex> множество всех <tex>r</tex>-независимых подмножеств из <tex>2^X</tex>. Докажем, что <tex>\mathcal{I}</tex> удовлетворяет [[Определение матроида|аксиомам независимого множества]] 1, 2 и 3:<br> | ||
+ | # В силу (1) выполняется <tex>r(\emptyset)=0</tex>, следовательно <tex> \emptyset \in \mathcal{I}</tex>. | ||
+ | # Пусть <tex> I \in \mathcal{I}</tex> и <tex>J \subseteq I</tex>. Предположим от противного, что <tex>r(J) < |J|</tex>. Тогда, используя (1) и (3), получаем: <tex>|I| = r(I) = r(J \cup (I \setminus J)) \le r(J) + r(I \setminus J) - r(\emptyset) < |J| + |I \setminus J| = |I|</tex>, что невозможно. Следовательно, <tex>r(J) = |J|</tex>, т.е. <tex> J \in \mathcal{I} </tex> <br> | ||
+ | # Пусть <tex>I, J \in \mathcal{I}</tex> и <tex>|I| < |J|</tex>. Положим <tex>J \setminus I = \{p_1, \ldots,p_t\}</tex>. Пусть, от противного, <tex>I \cup p_i \notin \mathcal{I}</tex> для любого <tex>i = 1, \ldots,t</tex>. Тогда для <tex>i = 1, \ldots,t</tex> имеет место: <br> <tex> |I| = r(I) \le r(I \cup p_i) < |I \cup p_i| = |I| + 1</tex>, т.е. <tex> r(I \cup p_i) = |I|</tex>. <br> Отсюда, в силу доказанной раннее леммы, получаем <tex> r(I \cup J) = |I|</tex>. С другой стороны, <tex>|I| < |J| = r(J) \le r(I \cup J)</tex>. Противоречие. <br> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Все три аксиомы выполняются на <tex>\mathcal{I}</tex>, соответственно, семейство <tex>\mathcal{I}</tex> является семейством независимых множеств некоторого матроида <tex> M = \langle X, \mathcal{I} \rangle</tex>. Осталось проверить, что исходная функция <tex>r</tex> совпадает с ранговой функцией матроида <tex>M</tex>. Для этого надо доказать, что для любой [[Теорема о базах|базы]] <tex>B</tex> произвольного множества <tex>A \subseteq 2^X</tex> выполняется <tex> r(A) = |B| </tex>. Пусть <tex>B</tex> - [[Теорема о базах|база]] множества <tex>A \subseteq 2^X</tex>. По определению <tex>\mathcal{I} </tex> имеем <tex> r(B) = |B|</tex> и <tex>B</tex> {{---}} максимальное <tex>r</tex>-независимое подмножество из <tex>A</tex>. Если <tex>A=B</tex>, то, очевидно, <tex>r(A)=r(B).</tex> Поэтому пусть <tex>B \in A</tex>. Пусть <tex> A \setminus B = \{p_1, \ldots ,p_t\}</tex>. В силу максимальности <tex>B</tex> для любого <tex>i = 1, \ldots,t</tex> множество <tex>B \cup p_i</tex> не является <tex>r</tex>-независимым, т.е. <tex>r(B \cup p_i) < |B \cup p_i|</tex>. Тогда имеем: <tex> |B| = r(B) \leqslant r(B \cup p_i) < |B \cup p_i| = |B| + 1 </tex>, | |
− | Все три аксиомы выполняются на <tex>\mathcal{I}</tex>, соответственно, семейство <tex>\mathcal{I}</tex> является семейством независимых множеств некоторого матроида <tex> M = \langle X, \mathcal{I} \rangle</tex>. Осталось проверить, что исходная функция <tex>r</tex> совпадает с ранговой функцией матроида <tex>M</tex>. Для этого надо доказать, что для любой базы <tex>B</tex> произвольного множества <tex>A \subseteq 2^X</tex> выполняется <tex> r(A) = |B|. Пусть <tex>B</tex> - база множества <tex>A \subseteq 2^X</tex>. По определению <tex>\mathcal{I} </tex> имеем <tex> r(B) = |B|</tex> и <tex>B</tex> - максимальное <tex>r</tex>-независимое подмножество из <tex>A</tex>. Если <tex>A=B</tex>, то, очевидно, <tex>r(A)=r(B)</tex> | ||
− | <tex> |B| = r(B) \ | ||
т.е. <tex> r(B \cup p_i) = |B| </tex>. В силу доказанного утверждения получаем <tex>r(A) = |B|</tex>. <br> | т.е. <tex> r(B \cup p_i) = |B| </tex>. В силу доказанного утверждения получаем <tex>r(A) = |B|</tex>. <br> | ||
Теорема доказана. | Теорема доказана. | ||
}} | }} | ||
− | == | + | == Источники информации== |
− | ''Асанов М. О., Баранский В. А., Расин В. В.'' - Дискретная математика: Графы, матроиды, алгоритмы. '''ISBN 978-5-8114-1068-2''' <br> | + | *''Асанов М. О., Баранский В. А., Расин В. В.'' {{---}} Дискретная математика: Графы, матроиды, алгоритмы. '''ISBN 978-5-8114-1068-2''' <br> |
+ | |||
+ | == См. также== | ||
+ | * [[Аксиоматизация матроида базами]] | ||
+ | * [[Аксиоматизация матроида циклами]] | ||
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Матроиды]] | [[Категория:Матроиды]] |
Версия 18:54, 19 мая 2015
Лемма: |
Пусть , , и . Если для любого , то |
Доказательство: |
|
Теорема (об аксиоматизации матроида рангами): |
, где — конечное непустое множество, удовлетворяет условиям: |
Доказательство: |
Подмножество аксиомам независимого множества 1, 2 и 3:
|
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2