Алгоритм цифровой сортировки суффиксов циклической строки — различия между версиями
AKhimulya (обсуждение | вклад) м (→Псевдокод) |
AKhimulya (обсуждение | вклад) |
||
Строка 23: | Строка 23: | ||
==Пример== | ==Пример== | ||
− | |||
− | |||
<tex> | <tex> | ||
+ | s = abacaba\$ \\ | ||
+ | i' = i + 2^{k-1} \\ | ||
+ | \\ | ||
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} | \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} | ||
\hline | \hline | ||
\multicolumn{3}{|l|}{0 iteration} & \multicolumn{4}{l|}{1 iteration} & \multicolumn{4}{l|}{2 iteration} & \multicolumn{4}{l|}{3 iteration} \\ \hline | \multicolumn{3}{|l|}{0 iteration} & \multicolumn{4}{l|}{1 iteration} & \multicolumn{4}{l|}{2 iteration} & \multicolumn{4}{l|}{3 iteration} \\ \hline | ||
− | p & & c & p & & | + | p & & c & p & & $\langle c[i], c[i']\rangle$ & c & p & & $\langle c[i], c[i']\rangle$ & c & p & & $\langle c[i], c[i']\rangle$ & c \\ \hline |
7 & \$ & 1 & 7 & \$a & $\langle1, 2\rangle$ & 1 & 7 & \$aba & $\langle1, 5\rangle$ & 1 & 7 & \$abacaba & $\langle1, 8\rangle$ & 1 \\ \hline | 7 & \$ & 1 & 7 & \$a & $\langle1, 2\rangle$ & 1 & 7 & \$aba & $\langle1, 5\rangle$ & 1 & 7 & \$abacaba & $\langle1, 8\rangle$ & 1 \\ \hline | ||
0 & a & 2 & 6 & a\$ & $\langle2, 1\rangle$ & 2 & 6 & a\$ab & $\langle2, 3\rangle$ & 2 & 6 & a\$abacab & $\langle2, 5\rangle$ & 2 \\ \hline | 0 & a & 2 & 6 & a\$ & $\langle2, 1\rangle$ & 2 & 6 & a\$ab & $\langle2, 3\rangle$ & 2 & 6 & a\$abacab & $\langle2, 5\rangle$ & 2 \\ \hline |
Версия 14:26, 31 мая 2015
Содержание
Постановка задачи
Дана циклическая строка
. Суффиксом циклической строки называется строка (будем называть такую строкую суффиксом под номером i). Требуется отсортировать все её суффиксы в порядке лексикографической сортировки.Решение
Рассматриваемый алгоритм состоит из
итераций. На -той итерации ( ) сортируются циклические подстроки длины . На последней, -ой итерации, будут сортироваться подстроки длины , что эквивалентно сортировке циклических сдвигов.На каждой итерации алгоритм помимо перестановки
индексов циклических подстрок будет поддерживать для каждой циклической подстроки длиной , начинающейся в позиции , номер класса эквивалентности , которому эта подстрока принадлежит. В самом деле, среди подстрок могут быть одинаковые, и алгоритму понадобится информация об этом. Кроме того, номера классов эквивалентности будем давать таким образом, чтобы они сохраняли и информацию о порядке: если один суффикс меньше другого, то и номер класса он должен получить меньший.Описание алгоритма
На нулевой итерации отсортируем циклические подстроки длины сортировки подсчетом построим массив , содержащий номера суффиксов, отсортированных в лексикографическом порядке. По этому массиву построим массив классов эквивалентности .
, т.е. первые символы строк, и разделим их на классы эквивалентности (одинаковые символы должны быть отнесены к одному классу эквивалентности). При помощиНа
-ой итерации имеем массивы и , вычисленные на предыдущей итерации. Приведем алгоритм, выполняющий -ую итерацию за . Поскольку итераций всего , такой алгоритм имеет асимптотику .Заметим, что циклическая подстрока длины
состоит из двух подстрок длины , которые мы можем сравнивать между собой за , используя информацию с предыдущей итерации — номера классов эквивалентности . Таким образом, для подстроки длины , начинающейся в позиции , вся необходимая информация содержится в паре чисел .Отсортируем подстроки длины цифровая сортировка: отсортируем пары сначала по вторым элементам, а затем по первым (устойчивой сортировкой). Однако вторые элементы уже упорядочены — этот порядок задан в массиве от предыдущей итерации. Тогда, чтобы получить порядок пар по вторым элементам, надо от каждого элемента массива отнять ( даёт упорядочение подстрок длины , и при переходе к строке вдвое большей длины эти подстроки становятся их вторыми половинками, поэтому от позиции второй половинки отнимается длина первой половинки).
по данным парам и запишем порядок в массив . Воспользуемся здесь приёмом, на котором основанаЧтобы произвести устойчивую сортировку по первым элементам пар, воспользуемся сортировкой подсчетом, имеющую асимптотику
.Осталось пересчитать номера классов эквивалентности
, пройдя по новой перестановке и сравнивая соседние элементы (как пары двух чисел).Пример
Псевдокод
/* преобразует масив count, так что теперь он содержит позиции в массиве suffs с которых необходимо вставлять подстроки, начинающиеся с соответствующих символов */ int[] calc_positions(count) count[0] = 0 for i = 2 .. count.length count[i] += count[i - 1] return count /* принимает строку, для которой требуется построить суффиксный массив возвращает суффиксный массив */ int[] suff_array(str) s += '$' ALPHABET = 255 // нулевая итерация count = int[max(ALPHABET, str.length)] fill(count, 0) for ch in str count[ch]++ count = calc_positions(count) // suffs будет хранить индексы начал отсортированных подстрок текущей длины suffs = int[str.length] for ch in str suffs[count[ch]++] = i; classes = int[str.length] classesN = 0 last_char = '$' for suf in suffs if s[suf]last_char last_char = s[suf[i]] classesN++ classes[suf] = classesN; // нулевая итерация завершена // сортируем подстроки длиной 2 * cur_len = 2^k curr_len = 1 while cur_len str.length // сортируем по второй половине подстроки sorted_by2 = int[str.length] for i = 0 .. str.length sorted_by2[i] = (suffs[i] + str.length - cur_len) % str.length // сортируем по первой половине // сортировка устойчивая, значит получим целиком отсортированные подстроки fill(count, 0) for by2 in sorted_by2 count[classes[by2]]++ count = calc_positions(count) for i = 0 .. str.length suffs[count[classes[sorted_by2[i]]]++] = sorted_by2[i] new_classes = int[str.length] classesN = 0 for i = 0 .. str.length mid1 = (suffs[i] + cur_len) % str.length mid2 = (suffs[i - 1] + cur_len) % str.length if classes[suffs[i]] classes[suffs[i-1]] or classes[mid1] classes[mid2] classesN new_classes[suffs[i]] = classesN classes = new_classes cur_len *= 2 return suffs