Дерево Фенвика — различия между версиями
Строка 1: | Строка 1: | ||
== Описание структуры == | == Описание структуры == | ||
− | + | [[Файл:Bit.jpg|thumb|300px|По горизонтали — индексы массива <tex>T</tex> <br/> (<tex>T_i</tex> является суммой элементов массива <tex>A</tex>, индексы которых заштрихованы),<br/> по вертикали — индексы массива <tex>A</tex>]] | |
'''Дерево Фе́нвика''' (англ. ''Binary indexed tree'') — структура данных, требующая <tex> O(n) </tex> памяти и позволяющая эффективно (за <tex> O(\log n) </tex>) выполнять следующие операции: | '''Дерево Фе́нвика''' (англ. ''Binary indexed tree'') — структура данных, требующая <tex> O(n) </tex> памяти и позволяющая эффективно (за <tex> O(\log n) </tex>) выполнять следующие операции: | ||
* изменять значение любого элемента в массиве, | * изменять значение любого элемента в массиве, | ||
* выполнять некоторую [[Ассоциативная_операция |ассоциативную]], [[Абелева_группа |коммутативную]], [[Группа |обратимую операцию]] <tex> \circ </tex> на отрезке <tex> [i, j] </tex>. | * выполнять некоторую [[Ассоциативная_операция |ассоциативную]], [[Абелева_группа |коммутативную]], [[Группа |обратимую операцию]] <tex> \circ </tex> на отрезке <tex> [i, j] </tex>. | ||
− | |||
Впервые описано Питером Фенвиком в 1994 году. | Впервые описано Питером Фенвиком в 1994 году. | ||
Строка 12: | Строка 11: | ||
Эту функцию можно вычислять по другой формуле: <tex> F(i) = i - 2^{h(i)} + 1, </tex> где <tex> h(i) </tex> — количество подряд идущих единиц в конце бинарной записи числа <tex> i </tex>. Оба варианта равносильны, так как функция, заданная какой-либо из этих формул, заменяет все подряд идущие единицы в конце числа на нули. | Эту функцию можно вычислять по другой формуле: <tex> F(i) = i - 2^{h(i)} + 1, </tex> где <tex> h(i) </tex> — количество подряд идущих единиц в конце бинарной записи числа <tex> i </tex>. Оба варианта равносильны, так как функция, заданная какой-либо из этих формул, заменяет все подряд идущие единицы в конце числа на нули. | ||
+ | |||
+ | ==Построение дерева== | ||
+ | Покажем, как построить дерево Фенвика. | ||
+ | |||
+ | '''function''' init(A, T): | ||
+ | '''for''' i = 0 '''to''' N - 1 | ||
+ | '''for''' j = i & (i + 1) '''to''' i | ||
+ | T[i] += a[j] | ||
== Запрос изменения элемента == | == Запрос изменения элемента == | ||
Строка 17: | Строка 24: | ||
{{Лемма | {{Лемма | ||
|statement= | |statement= | ||
− | Для | + | Для пересчёта дерева Фенвика при изменении величины <tex>a_{k}</tex> необходимо изменить элементы дерева <tex>T_{i}</tex>, для индексов <tex>i</tex> которых верно неравенство <tex>F(i) \leqslant k \leqslant i</tex> . |
|proof= | |proof= | ||
<tex> T_i =\sum\limits_{k = F(i)}^{i} a_k , i = 0 .. n - 1 \Rightarrow</tex> необходимо менять те <tex>T_i</tex>, для которых <tex>a_{k}</tex> попадает в <tex>T_i \Rightarrow</tex> необходимые <tex> i </tex> удовлетворяют условию <tex>F(i) \leqslant k \leqslant i</tex>. | <tex> T_i =\sum\limits_{k = F(i)}^{i} a_k , i = 0 .. n - 1 \Rightarrow</tex> необходимо менять те <tex>T_i</tex>, для которых <tex>a_{k}</tex> попадает в <tex>T_i \Rightarrow</tex> необходимые <tex> i </tex> удовлетворяют условию <tex>F(i) \leqslant k \leqslant i</tex>. | ||
Строка 24: | Строка 31: | ||
{{Лемма | {{Лемма | ||
|statement= Все такие <tex> i </tex> можно найти по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>, где <tex> \mid </tex> — это операция побитового логического <tex> OR </tex>. | |statement= Все такие <tex> i </tex> можно найти по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>, где <tex> \mid </tex> — это операция побитового логического <tex> OR </tex>. | ||
− | |proof=Из доказанной выше леммы следует, что первый элемент последовательности само <tex> k </tex>. Для него выполняется равенство, так как <tex> F(i) \leqslant i </tex>. По формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как <tex>F(i)</tex> осталось прежним или уменьшилось, а <tex> i </tex> увеличилось. <tex> F(i) </tex> не может увеличится, так как функция <tex> F </tex> заменяет последние подряд идущие единицы числа <tex> i </tex> на нули, а по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> у нового значения <tex> i </tex> увеличивается количество единиц в конце, что не может привести к увеличению <tex> F(i) </tex>. | + | |proof=Из доказанной выше леммы следует, что первый элемент последовательности само <tex> k </tex>. Для него выполняется равенство, так как <tex> F(i) \leqslant i </tex>. По формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как <tex>F(i)</tex> осталось прежним или уменьшилось, а <tex> i </tex> увеличилось. <tex> F(i) </tex> не может увеличится, так как функция <tex> F </tex> заменяет последние подряд идущие единицы числа <tex> i </tex> на нули, а по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> у нового значения <tex> i </tex> увеличивается количество единиц в конце, что не может привести к увеличению <tex> F(i) </tex>. Докажем от противного, что нельзя рассматривать значения <tex> i </tex>, отличные от тех, которые мы получили по формуле. Рассмотрим две последовательности индексов: первая последовательность получена по формуле, вторая — любые числа не меньше <tex>k</tex>. Возьмём число <tex> j </tex> из второй последовательности, которого нет в первой последовательности. Пусть <tex>F(j) \leqslant k </tex>. Уберём у <tex>j</tex> все подряд идущие единицы в конце двоичной записи, столько же цифр уберём в конце числа <tex>k</tex>. Обозначим их как <tex>j_{0}</tex> и <tex>k_{0}</tex>. Чтобы выполнялось условие <tex>F(j) \leqslant k </tex>, должно выполняться неравенство <tex>j_{0} \leqslant k_{0}</tex>. Но если <tex>j_{0} < k_{0}</tex>, то и <tex>j \leqslant k</tex>, что противоречит условию <tex>j > k</tex>. Значит, <tex>j_{0} = k_{0}</tex>. Но тогда <tex>j</tex> возможно получить по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>, следовательно, <tex>F(j) > k </tex>. Получили противоречие: <tex>j</tex> можно вычислить по формуле, а это значит, что оно содержится в первой последовательности. Таким образом, нужные элементы можно искать по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>. |
+ | |||
+ | |||
+ | }} | ||
− | Заметим, что <tex>F(i)</tex> возрастает немонотонно. Поэтому нельзя просто перебирать значения от <tex> k </tex>, пока не нарушается условие. Например, | + | Заметим, что <tex>F(i)</tex> возрастает немонотонно. Поэтому нельзя просто перебирать значения от <tex> k </tex>, пока не нарушается условие. Например, пусть <tex> k = 3 </tex>. При данной стратегии на следующем шаге (<tex> i = 4</tex>) нарушится условие и мы прекратим пересчитывать <tex> T_i </tex>. Но тогда мы упускаем остальные значения <tex>i</tex>, например <tex> 7 </tex>. |
{| style="background-color:#CCC;margin:0.5px" | {| style="background-color:#CCC;margin:0.5px" | ||
Строка 98: | Строка 108: | ||
Несложно заметить, что данная последовательность строго возрастает и в худшем случае будет применена логарифм раз, так как добавляет каждый раз по одной единице в двоичном разложении числа <tex>i</tex>. | Несложно заметить, что данная последовательность строго возрастает и в худшем случае будет применена логарифм раз, так как добавляет каждый раз по одной единице в двоичном разложении числа <tex>i</tex>. | ||
− | Напишем функцию, которая будет прибавлять к элементу <tex>a_i</tex> число <tex>d</tex>, и при этом меняет соответствующие частичные суммы. | + | Напишем функцию, которая будет прибавлять к элементу <tex>a_i</tex> число <tex>d</tex>, и при этом меняет соответствующие частичные суммы. Так как наш массив содержит <tex>N</tex> элементов, то мы будем искать <tex>i_{next}</tex> до тех пор, пока оно не превышает значение <tex>N</tex>. |
'''function''' modify(i, d): | '''function''' modify(i, d): | ||
Строка 108: | Строка 118: | ||
'''function''' set(i, t): | '''function''' set(i, t): | ||
− | d = t - a[i] | + | d = t - a[i] |
modify(i, d) | modify(i, d) | ||
Версия 22:05, 4 июня 2015
Содержание
Описание структуры
Дерево Фе́нвика (англ. Binary indexed tree) — структура данных, требующая
памяти и позволяющая эффективно (за ) выполнять следующие операции:- изменять значение любого элемента в массиве,
- выполнять некоторую ассоциативную, коммутативную, обратимую операцию на отрезке .
Впервые описано Питером Фенвиком в 1994 году.
Пусть дан массив
. Деревом Фенвика будем называть массив из элементов: , где и — некоторая функция, от выбора которой зависит время работы операций над деревом. Рассмотрим функцию, позволяющую делать операции вставки и изменения элемента за время . Она задается простой формулой: , где — это операция побитового логического . При числа и его значения, увеличенного на единицу, мы получаем это число без последних подряд идущих единиц.Эту функцию можно вычислять по другой формуле:
где — количество подряд идущих единиц в конце бинарной записи числа . Оба варианта равносильны, так как функция, заданная какой-либо из этих формул, заменяет все подряд идущие единицы в конце числа на нули.Построение дерева
Покажем, как построить дерево Фенвика.
function init(A, T): for i = 0 to N - 1 for j = i & (i + 1) to i T[i] += a[j]
Запрос изменения элемента
Нам надо научиться быстро изменять частичные суммы в зависимости от того, как изменяются элементы. Рассмотрим как изменяется массив
при изменении элемента .Лемма: |
Для пересчёта дерева Фенвика при изменении величины необходимо изменить элементы дерева , для индексов которых верно неравенство . |
Доказательство: |
необходимо менять те , для которых попадает в необходимые удовлетворяют условию . |
Лемма: |
Все такие можно найти по формуле , где — это операция побитового логического . |
Доказательство: |
Из доказанной выше леммы следует, что первый элемент последовательности само | . Для него выполняется равенство, так как . По формуле мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как осталось прежним или уменьшилось, а увеличилось. не может увеличится, так как функция заменяет последние подряд идущие единицы числа на нули, а по формуле у нового значения увеличивается количество единиц в конце, что не может привести к увеличению . Докажем от противного, что нельзя рассматривать значения , отличные от тех, которые мы получили по формуле. Рассмотрим две последовательности индексов: первая последовательность получена по формуле, вторая — любые числа не меньше . Возьмём число из второй последовательности, которого нет в первой последовательности. Пусть . Уберём у все подряд идущие единицы в конце двоичной записи, столько же цифр уберём в конце числа . Обозначим их как и . Чтобы выполнялось условие , должно выполняться неравенство . Но если , то и , что противоречит условию . Значит, . Но тогда возможно получить по формуле , следовательно, . Получили противоречие: можно вычислить по формуле, а это значит, что оно содержится в первой последовательности. Таким образом, нужные элементы можно искать по формуле .
Заметим, что
возрастает немонотонно. Поэтому нельзя просто перебирать значения от , пока не нарушается условие. Например, пусть . При данной стратегии на следующем шаге ( ) нарушится условие и мы прекратим пересчитывать . Но тогда мы упускаем остальные значения , например ., десятичная запись | |||||||||||
, двоичная запись | |||||||||||
, двоичная запись | |||||||||||
, десятичная запись |
Все мы можем получить следующим образом: . Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию . Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу.
Несложно заметить, что данная последовательность строго возрастает и в худшем случае будет применена логарифм раз, так как добавляет каждый раз по одной единице в двоичном разложении числа
.Напишем функцию, которая будет прибавлять к элементу
число , и при этом меняет соответствующие частичные суммы. Так как наш массив содержит элементов, то мы будем искать до тех пор, пока оно не превышает значение .function modify(i, d): while i < N t[i] += d i = i | (i + 1)
Часто можно встретить задачу, где требуется заменить значение элемента
на . Заметим, что если вычислить разность и , то можно свести эту задачу к операции прибавления к .function set(i, t): d = t - a[i] modify(i, d)
Запрос получения значения функции на префиксе
Пусть существует некоторая бинарная операция
. Чтобы получить значение на отрезке , нужно провести операцию, обратную к , над значениями на отрезках и .В качестве бинарной операции
рассмотрим операцию сложения.Обозначим
. Тогда .Лемма: |
входит в сумму для , если . |
Для доказательства леммы рассмотрим битовую запись следующих чисел:
Реализация
Приведем код функции
:int sum(i): result = 0; while i >= 0 result += t[i] i = f(i) - 1 return result
Сравнение дерева Фенвика и дерева отрезков
- Дерево Фенвика занимает в константное значение раз меньше памяти, чем дерево отрезков. Это следует из того, что дерево Фенвика хранит только значение операции для каких-то элементов, а дерево отрезков хранит сами элементы и частичные результаты операции на подотрезках, поэтому оно занимает как минимум в два раза больше памяти.
- Дерево Фенвика проще в реализации.
- Операция на отрезке, для которой строится дерево Фенвика, должна быть обратимой, а это значит, что минимум (как и максимум) на отрезке это дерево считать не может, в отличие от дерева отрезков. Но если нам требуется найти минимум на префиксе, то дерево Фенвика справится с этой задачей. Такое дерево Фенвика поддерживает операцию уменьшения элементов массива. Пересчёт минимума в дереве происходит быстрее, чем обновление массива минимумов на префиксе.