Вещественные числа — различия между версиями
Rybak (обсуждение | вклад) (→Неполнота числовой оси) |
Rybak (обсуждение | вклад) (→Неполнота числовой оси) |
||
Строка 70: | Строка 70: | ||
|proof= | |proof= | ||
− | Допустим, что такое d существует и <tex> d \in \mathbb Q </tex>. Тогда возможны три случая: | + | Допустим, что такое <tex>d</tex> существует и <tex> d \in \mathbb Q </tex>. Тогда возможны три случая: <tex> d^2 < 2,\ d^2 = 2,\ d^2 > 2</tex> |
− | |||
− | <tex> d^2 < 2,\ d^2 = 2,\ d^2 > 2</tex> | ||
Случай <tex> d^2=2 </tex> невозможен. Докажем это. | Случай <tex> d^2=2 </tex> невозможен. Докажем это. |
Версия 08:23, 18 ноября 2010
Лекция от 13 сентября 2010.
Содержание
Натуральные числа
Множество натуральных чисел
определяется следующим образом:За числом
в натуральном ряде непосредственно следует , между и других нет.Гильберт:
Натуральные числа - первичные элементы, природа которых не обсуждается, все остальное базируется на этом.
Целые числа
Множество целых чисел
. ТакжеРациональные числа
Множество рациональных чисел
Множество рациональных чисел упорядочено, то есть всегда выполняется только один из трех случаев:
илиМодуль
Определение: |
— модуль или абсолютная величина числа x |
Свойства модуля:
Аксиома Архимеда
В множестве
выполняется аксиома Архимеда:
Дополнение множества рациональных чисел
Пусть
— два числовых множества.
Определение: |
Запись | означает, что .
Аналогично определяются записи типа , и т. д. и т. п.
Если
, то запись означает, что .Неполнота числовой оси
Утверждение: |
Пусть
Тогда |
Допустим, что такое существует и . Тогда возможны три случая:Случай невозможен. Докажем это.Предположим, что , Значит число можно представить в виде несократимой дроби .Тогда: 2 - простое, значит делится на, противоречие. Возможны два случая: либо , либо . Рассмотрим первый из них, второй доказывается аналогичным образом1) Для всех рациональных
Заметим, что если , то; Для такого , противоречие. |
Этим утверждением обнаруживается серьезный пробел во множестве рациональных чисел. Для его ликвидации вводятся некоторые объекты. При таком пополнении должны выполняться:
- 4 арифметических действия с сохранением законов арифметики.
- Сохранение упорядоченности.
- Выполнение аксиомы непрерывности:
Пусть
и — 2 произвольных подмножества из пополненного множества рациональных чисел, и , то в пополненном множествеПолучим множество, называемое множеством вещественных чисел —
.Из разбора ясно, что мы стоим на аксиоматических позициях.
Для анализа важно то, что для
выполняется аксиома непрерывности.Существует несколько моделей
:- Модель Дедекинда
- Модель Вейерштрасса
- Модель Кантора
Базируясь на аксиоме Архимеда и непрерывности, можно установить, что
всюду плотно на :В любом вещественном интервале
найдется рациональное число.Для нас этот важен тем, что он гарантирует единственность пополнения
для выполнения аксиомы непрерывности.Любое такое пополнение, независимо от модели, приводит к множествам, изоморфным друг другу.