Алгоритм Борувки — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Доказательство корректности)
(Описание алгоритма)
Строка 3: Строка 3:
  
 
==Описание алгоритма==
 
==Описание алгоритма==
# Построим граф <tex>T</tex>. Изначально <tex>T</tex> содержит все вершины из <tex>G</tex> и не содержит ребер (каждая вершина в графе <tex>T</tex> {{---}} отдельная компонента связности).
+
# Изначально все ребра из <tex>G</tex> не окрашены, а каждая вершина графа {{---}} тривиальное дерево.
# Для каждой компоненты связности находим минимальное по весу ребро, которое связывает эту компоненту с другой. 
+
# Для каждого дерева <tex> T </tex> найдем минимальное инцидентное ему ребро. Окрасим все такие ребра.
# Добавим в <tex>T</tex> все найденные рёбра.
+
# Повторяем шаг <tex> 2 </tex> пока в графе не останется только одно дерево <tex> T </tex>.
# Повторяем пункты <tex dpi = 120> 2 </tex> и <tex dpi = 120> 3 </tex>, пока граф <tex dpi = 120> T </tex> не станет деревом.
+
 
  
 
Данный алгоритм может работать неправильно, если в графе есть ребра равные по весу. Например, полный граф из трех вершин, вес каждого ребра равен один. В <tex>T</tex> могут быть добавлены все три ребра. Избежать эту проблему можно, выбирая в первом пункте среди ребер, равных по весу, ребро с наименьшим номером.
 
Данный алгоритм может работать неправильно, если в графе есть ребра равные по весу. Например, полный граф из трех вершин, вес каждого ребра равен один. В <tex>T</tex> могут быть добавлены все три ребра. Избежать эту проблему можно, выбирая в первом пункте среди ребер, равных по весу, ребро с наименьшим номером.
 
Доказательство будем проводить, считая веса всех ребер различными.
 
  
 
==Доказательство корректности==
 
==Доказательство корректности==

Версия 00:33, 11 октября 2015

Алгоритм Борувки (англ. Borůvka's algorithm) — алгоритм поиска минимального остовного дерева (англ. minimum spanning tree, MST) во взвешенном неориентированном связном графе. Впервые был опубликован в 1926 году Отакаром Борувкой.

Описание алгоритма

  1. Изначально все ребра из [math]G[/math] не окрашены, а каждая вершина графа — тривиальное дерево.
  2. Для каждого дерева [math] T [/math] найдем минимальное инцидентное ему ребро. Окрасим все такие ребра.
  3. Повторяем шаг [math] 2 [/math] пока в графе не останется только одно дерево [math] T [/math].


Данный алгоритм может работать неправильно, если в графе есть ребра равные по весу. Например, полный граф из трех вершин, вес каждого ребра равен один. В [math]T[/math] могут быть добавлены все три ребра. Избежать эту проблему можно, выбирая в первом пункте среди ребер, равных по весу, ребро с наименьшим номером.

Доказательство корректности

Теорема:
Алгоритм Борувки строит MST
Доказательство:
[math]\triangleright[/math]

Очевидно, что в результате работы алгоритма получается дерево. Пусть [math] T [/math] — минимальное остовное дерево графа [math] G [/math], а [math] T' [/math] — дерево полученное после работы алгоритма.

Покажем, что [math] T = T'[/math].

Предположим обратное [math] T \neq T' [/math]. Пусть ребро [math] e' [/math] — первое окрашенное ребро дерева [math] T' [/math], не принадлежащее дереву [math] T [/math]. Пусть [math] P [/math] — путь, соединяющий в дереве [math] T [/math] вершины ребра [math] e' [/math].

Понятно, что в момент, когда ребро [math] e' [/math] красили, какое-то ребро [math] P [/math] (назовем его [math] e [/math]) не было покрашено. По алгоритму [math] w(e) \gt w(e') [/math]. Однако тогда [math] T - e + e' [/math] — остовное дерево меньшего веса. Получили противоречение. Следовательно [math] T = T'[/math].
[math]\triangleleft[/math]

Реализация

У вершины есть поле comp — компонента связности, которой принадлежит эта вершина.

  // [math]G[/math] — исходный граф
  // [math]w[/math] — весовая функция
  function [math]\mathtt{boruvkaMST}():[/math]
      while [math]T\mathtt{.size} \lt  n - 1[/math]                                   
           for [math]k \in [/math] Component                                 // Component — множество компонент связности в [math]T[/math]
               [math]w(\mathtt{minEdge}[k])=\infty[/math]                      // для каждой компоненты связности вес минимального ребра = [math]\infty[/math]
           [math]\mathtt{findComp(}T\mathtt{)}[/math]                                      // разбиваем граф [math]T[/math] на компоненты связности обычным dfs-ом
           for [math]\mathtt{(u,v)} \in  E [/math]
               if [math]\mathtt{u.comp} \neq \mathtt{v.comp}[/math]
                   if [math]w(\mathtt{minEdge}[\mathtt{u.comp}]) \lt  w(u,v)[/math]
                       [math]\mathtt{minEdge}[\mathtt{u.comp}] = (u,v)[/math]
                   if [math]w(\mathtt{minEdge}[\mathtt{v.comp}]) \lt  w(u,v)[/math]
                       [math]\mathtt{minEdge}[\mathtt{v.comp}] = (u,v)[/math]
           for [math]k \in [/math] Component                                 
               [math]T\mathtt{.addEdge}(\mathtt{minEdge}[k])[/math]                     // добавляем ребро если его не было в [math]T[/math]
      return [math]T[/math]     

Пример

Изображение Компоненты связности Описание
Boruvka 1.png {A}
{B}
{C}
{D}
{E}
{F}
{G}
Начальный граф [math]G[/math]. Каждая вершина является компонентой (синие окружности).
Boruvka 2.png {ABDF}
{CEG}
На первой итерации внешнего цикла для каждой компоненты были добавлены минимальные сопряженные ребра. Некоторые ребра добавлены несколько раз ([math]AD[/math] и [math]CE[/math]). Осталось две компоненты.
Boruvka 3.png {ABCDEFG} На последней итерации внешнего цикла было добавлено минимальное ребро, соединяющее две оставшиеся компоненты (ребро [math]BE[/math]). Осталась одна компонента. Минимальное остовное дерево графа [math]G[/math] построено.

Асимптотика

Внешний цикл повторяется [math]\log{V}[/math] раз, так как количество компонент связности каждый раз уменьшается в двое и изначально равно количеству вершин. Что же касается внутреннего цикла, то он выполняется за [math]E[/math], где [math]E[/math] — количество рёбер в исходном графе. Следовательно конечное время работы алгоритма [math]O(E\log{V})[/math].

См. также

Источники информации