Задача коммивояжера, ДП по подмножествам — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Динамическое программирование по подмножествам (по маскам))
Строка 53: Строка 53:
  
 
Это решение использует <tex>O(2^n)</tex> памяти и имеет асимптотику <tex>O(2^nn)</tex>.
 
Это решение использует <tex>O(2^n)</tex> памяти и имеет асимптотику <tex>O(2^nn)</tex>.
 
== Реализация ==
 
Прежде чем писать код, скажем пару слов о порядке обхода состояний. Обозначим за <tex>|mask|</tex> количество единиц в маске (иначе говоря количество пройденных вершин не считая текущей). Тогда, поскольку при рассмотрении состояния <tex>\langle i, mask \rangle</tex> мы смотрим на состояния
 
 
<tex>\langle j, mask - 2^j \rangle</tex>, и <tex>|mask| = |mask - 2^j| + 1</tex>, то состояния с большим <tex>|mask|</tex> должны быть посещены позже, чтобы к моменту вычисления текущего состояния были вычислены все те, которые используются для его подсчёта.
 
Однако если использовать рекурсию, об этом можно не беспокоиться  (и сэкономить немало кода, времени и памяти).
 
  <span style="color:Green">//Все переменные используются из описания алгоритма, <tex>\infty</tex> = бесконечность</span>
 
  '''function''' findCheapest(i, mask):
 
    '''if''' d[i][mask] != <tex>\infty</tex>
 
      '''return''' d[i][mask]
 
    '''for''' j = 0 .. n - 1
 
      '''if''' w(i, j) существует '''and''' j-ый бит mask == 1 
 
        d[i][mask] = '''min'''(d[i][mask], findCheapest(j, mask - 2 ** j) + w(i, j))
 
  '''return''' d[i][mask]
 
 
 
  '''for''' i = 0 .. n - 1
 
    '''for''' mask = 0 .. 2 ** n - 1
 
    d[i][mask] = <tex>\infty</tex>
 
  d[0][0] = 0;
 
  ans = findCheapest(0, 2 ** n - 1)
 
  '''if''' ans == <tex>\infty</tex>
 
    exit
 
Дальше ищем сам путь:
 
  i = 0
 
  mask = 2 ** n - 1
 
  path.push(0)
 
  '''while''' mask != 0
 
    '''for''' j = 0 .. n - 1
 
      '''if''' w(i, j) существует '''and''' j-ый бит mask == 1 '''and''' d[i][mask] == d[j][mask - 2 ** j] + w(i, j)
 
        path.push(j)
 
        i = j
 
        mask = mask - 2 ** j
 
        '''continue'''
 
  
 
== См. также ==
 
== См. также ==

Версия 20:01, 9 января 2016

Задача:
Задача о коммивояжере (англ. Travelling salesman problem, TSP) — задача, в которой коммивояжер должен посетить [math] N [/math] городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей?


Варианты решения

NP-полнота задач о гамильтоновом цикле и пути в графах

Так вот задача о коммивояжере относится к классу NP-полных задач. Поэтому, рассмотрим два варианта решения с экспоненциальным временем работы.

Перебор перестановок

Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все [math] N! [/math] всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших [math]N[/math]. Сложность алгоритма [math]O({N!}\times{N})[/math].

Динамическое программирование по подмножествам (по маскам)

Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе.

Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам — дороги. Пусть в графе [math] G=(V,E)[/math] [math] N [/math] вершин, пронумерованных от [math]0[/math] до [math]N-1[/math] и каждое ребро [math](i, j) \in E [/math] имеет некоторый вес [math] w(i,j)[/math]. Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.

Подробнее можно прочитать в этой статье.

Оптимизация решения

Пусть [math]dp[mask][i][/math] содержит булево значение — существует ли в подмножества [math]mask[/math] гамильтонов путь, заканчивающийся в вершине [math]i[/math].

Сама динамика будет такая:
[math] d[mask][i] = \left\{\begin{array}{llcl} 1&;\ |mask| = 1,\ mask_i = 1\\ \bigvee_{mask[j]=1, (j, i) \in E}\limits d[mask \oplus 2^i][j] &;\ |mask| \gt  1,\ mask_i= 1 \\  0&;\ otherwise\\ \end{array}\right. [/math]

Это решение требует [math]O(2^nn)[/math] памяти и [math]O(2^nn^2)[/math] времени. Эту оценку можно улучшить, если изменить динамику следующим образом.

Пусть теперь [math]d'[mask][/math] хранит маску подмножества всех вершин, для которых существует гамильтонов путь в подмножестве [math]mask[/math], заканчивающихся в этой вершине. Другими словами, сожмем предыдущую динамику: [math]d'[mask][/math] будет равно [math]\sum_{i \in [0..n-1]}\limits d[mask][i] \cdot 2 ^i [/math]. Для графа [math]G[/math] выпишем [math]n[/math] масок [math]M_i[/math], для каждой вершины задающие множество вершин, которые связаны ребром в данной вершиной. То есть [math]M_i = \sum_{j \in [0..n-1]}\limits 2^i \cdot ((i, j) \in E ? 1:0) [/math].

Тогда динамика перепишется следующим образом:
[math] d'[mask][i] = \left\{\begin{array}{llcl} 2^i&;\ |mask| = 1,\ mask_i = 1\\ \sum_{j \in [0..n-1]}\limits 2^i \cdot ((d[mask \oplus 2^i] \& M_i) \neq 0?1:0) &;\ |mask| \gt  1 \\  0&;\ otherwise\\ \end{array}\right. [/math]

Особое внимание следует уделить выражению [math]d[mask \oplus 2^i] \& M_i[/math] . Первая часть выражения содержит подмножество вершин, для которых существует гамильтонов путь, заканчивающихся в соответствующих вершинах в подмножестве [math]mask[/math] без вершины [math]i[/math], а вторая — подмножество вершин, связанных с [math]i[/math] ребром. Если эти множества пересекаются хотя бы по одной вершине (их [math]\&[/math] не равен [math]0[/math]), то, как нетрудно понять, в [math]mask[/math] существует гамильтонов путь, заканчивающийся в вершине [math]i[/math].

Окончательная проверка состоит в сравнении [math]d[2^n - 1][/math] c [math]0[/math].

Это решение использует [math]O(2^n)[/math] памяти и имеет асимптотику [math]O(2^nn)[/math].

См. также

Источники информации

  • Романовский И. В. Дискретный анализ. СПб.: Невский Диалект; БХВ-Петербург, 2003. ISBN 5-7940-0114-3
  • Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4