Количество подпалиндромов в строке — различия между версиями
Строка 32: | Строка 32: | ||
=== Избавление от коллизий === | === Избавление от коллизий === | ||
− | У хешей есть один недостаток {{---}} коллизии, возможно подобрать входные данные так, что хеши разных строк будут совпадать. Абсолютно точно проверить две подстроки на совпадение можно с помощью [[Суффиксный массив | суффиксного массива]], но с дополнительной памятью <tex>O(|s|\cdot \log(|s|)</tex>. Для этого построим суффиксный массив для строки <tex>s + \# + reverse(s)</tex>, при этом сохраним промежуточные результаты классов эквивалентности <tex>c</tex>. Пусть нам требуется проверить на совпадение подстроки <tex>s[i..i + l]</tex> и <tex>s[j..j + l]</tex>. Разобьем каждую нашу строку на две пересекающиеся подстроки длиной <tex>2^k</tex>, где <tex>k = \lfloor \log{l} \rfloor</tex>. Тогда наши строки совпадают, если <tex>c[k][i] = c[k][j]</tex> и <tex>c[k][i + l - 2^k] = c[k][j + l - 2^k]</tex>. | + | У хешей есть один недостаток {{---}} коллизии, возможно подобрать входные данные так, что хеши разных строк будут совпадать. Абсолютно точно проверить две подстроки на совпадение можно с помощью [[Суффиксный массив | суффиксного массива]], но с дополнительной памятью <tex>O(|s|\cdot \log(|s|))</tex>. Для этого построим суффиксный массив для строки <tex>s + \# + reverse(s)</tex>, при этом сохраним промежуточные результаты классов эквивалентности <tex>c</tex>. Пусть нам требуется проверить на совпадение подстроки <tex>s[i..i + l]</tex> и <tex>s[j..j + l]</tex>. Разобьем каждую нашу строку на две пересекающиеся подстроки длиной <tex>2^k</tex>, где <tex>k = \lfloor \log{l} \rfloor</tex>. Тогда наши строки совпадают, если <tex>c[k][i] = c[k][j]</tex> и <tex>c[k][i + l - 2^k] = c[k][j + l - 2^k]</tex>. |
Итоговая асимптотика алгоритма: предподсчет за построение суффиксного массива и <tex>O(\log(|s|))</tex> на запрос, если предподсчитать все <tex>k</tex>, то <tex>O(1)</tex>. | Итоговая асимптотика алгоритма: предподсчет за построение суффиксного массива и <tex>O(\log(|s|))</tex> на запрос, если предподсчитать все <tex>k</tex>, то <tex>O(1)</tex>. | ||
Строка 39: | Строка 39: | ||
*[[Суффиксный массив]] | *[[Суффиксный массив]] | ||
*[[Поиск наибольшей общей подстроки двух строк с использованием хеширования]] | *[[Поиск наибольшей общей подстроки двух строк с использованием хеширования]] | ||
− | |||
==Источники информации== | ==Источники информации== |
Версия 00:41, 31 марта 2016
Задача: |
Пусть дана строка палиндромов в ней. | , требуется посчитать количество
Содержание
Алгоритм
Идея
Рассмотрим сначала задачу поиска палиндромов нечетной длины. Для каждой позиции в строке бинарным поиском. Проверить совпадение левой и правой половины можно выполнить за , используя метод хеширования.
найдем длину наибольшего палиндрома с центром в этой позиции. Очевидно, что если строка является палиндромом, то строка полученная вычеркиванием первого и последнего символа из также является палиндромом, поэтому длину палиндрома можно искатьДля палиндромов четной длины алгоритм такой же, только следует проверять вторую строку со сдвигом на единицу, при этом мы не посчитаем никакой палиндром дважды из-за четности-нечетности палиндромов.
Псевдокод
int binarySearch(s : string, center, shift : int): //shift = 0 при поиске палиндрома нечетной длины, иначе shift = 1 int l = -1, r = min(center, s.length - center + shift), m = 0 while r - l != 1 m = l + (r - l) / 2 if hash(s[center - m..center]) == hash(reverse(s[center + shift..center + shift + m])) l = m else r = m return r
int palindromesCount(s : string): int ans = 0 for i = 0 to s.length ans += binarySearch(s, i, 0) + binarySearch(s, i, 1) return ans
Время работы
Изначальный подсчет хешей производится за
. Каждая итерация будет выполняться за , всего итераций — . Итоговое время работы алгоритма .Избавление от коллизий
У хешей есть один недостаток — коллизии, возможно подобрать входные данные так, что хеши разных строк будут совпадать. Абсолютно точно проверить две подстроки на совпадение можно с помощью суффиксного массива, но с дополнительной памятью . Для этого построим суффиксный массив для строки , при этом сохраним промежуточные результаты классов эквивалентности . Пусть нам требуется проверить на совпадение подстроки и . Разобьем каждую нашу строку на две пересекающиеся подстроки длиной , где . Тогда наши строки совпадают, если и .
Итоговая асимптотика алгоритма: предподсчет за построение суффиксного массива и
на запрос, если предподсчитать все , то .