Определение интеграла Римана, простейшие свойства — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «Пусть есть отрезок <tex>\left [ a,b \right ]</tex> и некоторое <tex dpi = "120">\tau:a=x_0<x_1<...<x_n=b</tex> (<tex>\tau</tex> назыв…»)
 
Строка 2: Строка 2:
 
<tex>rang~ \tau \stackrel{\mathrm{def}}{=} \max \left \{ \Delta_0, \Delta_1, \dots, \Delta_{n-1} \right \}</tex><br>
 
<tex>rang~ \tau \stackrel{\mathrm{def}}{=} \max \left \{ \Delta_0, \Delta_1, \dots, \Delta_{n-1} \right \}</tex><br>
 
<tex dpi = "120">\overline{x_k} \mathcal {2} \left [ x_k,x_{k+1} \right ]</tex>, <tex>~f\colon { \left [ a,b \right ]} \to {\mathbb {R}}</tex><br>
 
<tex dpi = "120">\overline{x_k} \mathcal {2} \left [ x_k,x_{k+1} \right ]</tex>, <tex>~f\colon { \left [ a,b \right ]} \to {\mathbb {R}}</tex><br>
<tex dpi = "120">\sigma \left ( f, \tau, \left \{ \overline{x_k} \right \} \right )</tex> (также обозначается как <tex dpi = "120">\sigma \left ( f, \tau, \right )</tex> или <tex dpi = "120">\sigma \left ( \tau \right )</tex>) <tex> </tex>
+
<tex dpi = "120">\sigma \left ( f, \tau, \left \{ \overline{x_k} \right \} \right )</tex> (также обозначается как <tex dpi = "120">\sigma \left ( f, \tau \right )</tex> или <tex dpi = "120">\sigma \left ( \tau \right )</tex>) <tex>~= \sum\limits_{k=0}^{n-1}</tex> <tex>f \left ( \overline{x_k} \right )\cdot\Delta_{k}</tex>

Версия 04:59, 29 ноября 2010

Пусть есть отрезок [math]\left [ a,b \right ][/math] и некоторое [math]\tau:a=x_0\lt x_1\lt ...\lt x_n=b[/math] ([math]\tau[/math] называется разбиением [math]\left [ a,b \right ][/math]). [math]\Delta_k=x_{k+1}-x_k[/math] называется длиной текущего отрезка разбиения.

[math]rang~ \tau \stackrel{\mathrm{def}}{=} \max \left \{ \Delta_0, \Delta_1, \dots, \Delta_{n-1} \right \}[/math]
[math]\overline{x_k} \mathcal {2} \left [ x_k,x_{k+1} \right ][/math], [math]~f\colon { \left [ a,b \right ]} \to {\mathbb {R}}[/math]
[math]\sigma \left ( f, \tau, \left \{ \overline{x_k} \right \} \right )[/math] (также обозначается как [math]\sigma \left ( f, \tau \right )[/math] или [math]\sigma \left ( \tau \right )[/math]) [math]~= \sum\limits_{k=0}^{n-1}[/math] [math]f \left ( \overline{x_k} \right )\cdot\Delta_{k}[/math]