Обсуждение участницы:Анна — различия между версиями
Анна (обсуждение | вклад) (→Доказательство корректности) |
Анна (обсуждение | вклад) (→Доказательство корректности) |
||
Строка 35: | Строка 35: | ||
Пусть работа <tex>k_{i_0} = k</tex> была заменена работой <tex>i_0</tex>, а так же <tex>k_{i_1} \cdots k_{i_r}</tex> {{---}} последовательность работ из <tex>S</tex>, каждая из которых была на некотором шаге заменена работой <tex>i_1 \cdots i_r</tex> соответственно. Тогда <tex>i_0 < i_1 < \cdots < i_r</tex>.<br> | Пусть работа <tex>k_{i_0} = k</tex> была заменена работой <tex>i_0</tex>, а так же <tex>k_{i_1} \cdots k_{i_r}</tex> {{---}} последовательность работ из <tex>S</tex>, каждая из которых была на некотором шаге заменена работой <tex>i_1 \cdots i_r</tex> соответственно. Тогда <tex>i_0 < i_1 < \cdots < i_r</tex>.<br> | ||
[[Файл:Sh.jpg|250px|thumb|right|Рис. 1. <tex>i_v</tex> превосходит <tex>i_u</tex>.]] | [[Файл:Sh.jpg|250px|thumb|right|Рис. 1. <tex>i_v</tex> превосходит <tex>i_u</tex>.]] | ||
− | Будем говорить <tex>i_v</tex> ''превосходит'' <tex>i_u</tex>, где <tex>u < v</tex>, если <tex>k_{i_v} \leq i_u</tex>. Тогда <tex>w_{k_{i_v}} \geq w_{k_{i_u}}</tex>, так как когда мы вставляли работу <tex>i_u</tex> мы выбрали для замены <tex>k_{i_u}</tex>, то есть ее вес был минимальным среди всех работ, находившихся на тот момент в <tex>S</tex>, включая <tex>k_{i_v}</tex>. Для большей ясности на рисунке 1 показано, в каком порядке располагаются эти работы относительно друг друга. | + | Будем говорить <tex>i_v</tex> ''превосходит'' <tex>i_u</tex>, где <tex>u < v</tex>, если <tex>k_{i_v} \leq i_u</tex>. Тогда <tex>w_{k_{i_v}} \geq w_{k_{i_u}}</tex>, так как когда мы вставляли работу <tex>i_u</tex> мы выбрали для замены <tex>k_{i_u}</tex>, то есть ее вес был минимальным среди всех работ, находившихся на тот момент в <tex>S</tex>, включая <tex>k_{i_v}</tex>. Для большей ясности на рисунке 1 показано, в каком порядке располагаются эти работы относительно друг друга согласно их номерам.<br> |
+ | Если из последовательности <tex>i_0 < i_1 < \cdots < i_r</tex> можно выделить подпоследовательность <tex>j_0 = i_0 < j_1 < \cdots < j_s</tex> со свойствами: | ||
+ | * <tex>j_{v + 1}</tex> превосходит <tex>j_v</tex>, где <tex>v \in [0 \cdots s - 1]</tex> | ||
+ | * <tex>j_{s - 1} < l \leq j_s</tex>, | ||
+ | то <tex>w_l \geq w_{k_{j_s}} \geq \cdots \geq w_{k_{j_0}} = w_k</tex>,что доказывает терему.<br> | ||
}} | }} |
Версия 20:20, 5 мая 2016
Задача: |
Дано | одинаковых станков, на которых нужно выполнить работ. Любая работа на любом станке выполняется единицу времени. Для каждой работы есть время окончания — ожидается, что до этого времени она будет закончена, и штраф , который нужно будет выплатить в случае, если работа была закончена после . Необходимо минимизировать суммарный штраф, который придется выплатить.
Описание алгоритма
Оптимальное расписание для этой задачи будем задавать множеством работ
Чтобы построить множество , будем добавлять работы в порядке неуменьшения их времен окончания, и как только некоторая работа опаздывает, удалим из работу с минимальным значением и поставим на ее место.
Пусть есть работы с временами окончания . Будем называть простоем временной интервал, в который на машине ничего не обрабатывается. Тогда следующий алгоритм вычислит оптимальное множество .
for to : if опаздывает, и все более ранние простои заполнены: найти if : заменить на в else: добавить в и поставить на место самого раннего простоя
Таким образом, работы, не попавшие в
, будут иметь минимальное значение .Доказательство корректности
Теорема: |
Вышеописанный алгоритм корректен и строит оптимальное множество работ . |
Доказательство: |
Пусть
Покажем, что в Будем говорить
|