Ppi1sumwu — различия между версиями
Анна (обсуждение | вклад) (Новая страница: «<tex dpi = "200"> P \mid p_i=1 \mid \sum w_i U_i</tex> {{Задача |definition= Дано <tex>m</tex> одинаковых станков, на которых ...») |
Анна (обсуждение | вклад) |
||
| Строка 45: | Строка 45: | ||
б). Пусть <tex>k^* < k</tex>. Тогда все работы из <tex>S_t \cup \{k\}</tex> могут быть выполнены в срок, так как <tex>S_t</tex> и <tex>k</tex> принадлежат <tex>S^*</tex>. Более того, все работы из множества <tex>\{j \in S_t | j < k\}</tex> могут быть выполнены без опозданий. Таким образом, мы снова приходим к тому, что множество <tex>S_t \cup \{k^*\}</tex> не содержит работ со штрафами, что является противоречием. | б). Пусть <tex>k^* < k</tex>. Тогда все работы из <tex>S_t \cup \{k\}</tex> могут быть выполнены в срок, так как <tex>S_t</tex> и <tex>k</tex> принадлежат <tex>S^*</tex>. Более того, все работы из множества <tex>\{j \in S_t | j < k\}</tex> могут быть выполнены без опозданий. Таким образом, мы снова приходим к тому, что множество <tex>S_t \cup \{k^*\}</tex> не содержит работ со штрафами, что является противоречием. | ||
}} | }} | ||
| + | |||
| + | [[Категория: Алгоритмы и структуры данных]] | ||
| + | [[Категория: Теория расписаний]] | ||
Версия 12:54, 6 мая 2016
| Задача: |
| Дано одинаковых станков, на которых нужно выполнить работ. Любая работа на любом станке выполняется единицу времени. Для каждой работы есть время окончания — ожидается, что до этого времени она будет закончена, и штраф , который нужно будет выплатить в случае, если работа была закончена после . Необходимо минимизировать суммарный штраф, который придется выплатить. |
Описание алгоритма
Оптимальное расписание для этой задачи будем задавать множеством работ , которые будут выполнены в начале, как после будет показано, именно за эти работы штраф начислен не будет. Работы, которые не войдут в , то есть завершатся с опозданием, могут быть выполнены в конце в любом порядке.
Чтобы построить множество , будем добавлять работы в порядке неуменьшения их времен окончания, и как только некоторая работа опаздывает, удалим из работу с минимальным значением и поставим на ее место.
Пусть есть работы с временами окончания . Будем называть простоем временной интервал, в который на машине ничего не обрабатывается. Тогда следующий алгоритм вычислит оптимальное множество .
for to : if опаздывает, и все более ранние простои заполнены: найти if : заменить на в else: добавить в и поставить на место самого раннего простоя
Таким образом, работы, не попавшие в , будут иметь минимальное значение .
Доказательство корректности
| Теорема: |
Вышеописанный алгоритм корректен и строит оптимальное множество работ . |
| Доказательство: |
|
Пусть — множество работ, вычисленное с помощью алгоритма. Тогда все работы, находящиеся в этом множестве, будут выполнены в срок, то есть штраф за них налагаться не будет, так как если работа заменила работу , которая успевала выполниться до истечения , то так же успеет выполниться в срок, потому что .
Покажем, что в работа может быть заменена работой без увеличения значения целевой функции. Рассмотрим два случая: Будем говорить превосходит , где , если . Тогда , так как когда мы вставляли работу мы выбрали для замены , то есть ее вес был минимальным среди всех работ, находившихся на тот момент в , включая . Для большей ясности на рисунке 1 показано, в каком порядке располагаются эти работы относительно друг друга согласно их номерам.
то , что доказывает теорему. |