QpmtnCmax — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Описание алгоритма)
(переписан псевдокод)
Строка 2: Строка 2:
 
{{Задача
 
{{Задача
 
|definition=
 
|definition=
Дано несколько станков с разной скоростью выполнения работ, работающих параллельно. Работа может быть прервана в любой момент и продолжена позже на любой машине. Необходимо минимизировать время выполнения всех работ.
+
Дано <tex>m</tex> станков с разной скоростью выполнения работ, работающих параллельно, и <tex>n</tex> работ. Работа может быть прервана в любой момент и продолжена позже на любой машине. Необходимо минимизировать время выполнения всех работ.
 
}}
 
}}
  
 
==Алгоритм построения расписания==
 
==Алгоритм построения расписания==
 
===Описание алгоритма===
 
===Описание алгоритма===
Пусть нам даны <tex>n</tex> работ и <tex>m</tex> станков. Перед выполнением алгоритма, упорядочим все работы по убыванию их времени выполнения:<tex> p_1 \geqslant p_2 \geqslant p_3 \ldots \geqslant p_n</tex>, а все машины в порядке убывания скоростей: <tex> s_1 \geqslant s_2 \geqslant s_3 \ldots \geqslant s_m</tex>. Введем следующие обозначения:
+
Перед выполнением алгоритма, упорядочим все работы по убыванию их времени выполнения:<tex> p_1 \geqslant p_2 \geqslant p_3 \ldots \geqslant p_n</tex>, а все машины в порядке убывания скоростей: <tex> s_1 \geqslant s_2 \geqslant s_3 \ldots \geqslant s_m</tex>. Введем следующие обозначения:
  
<tex> P_i = p_1 + \ldots + p_i</tex>
+
*<tex>P_i = p_1 + \ldots + p_i</tex>, <tex>i = 1 \ldots n</tex> {{---}} сумма первых <tex>i</tex> работ
 +
*<tex>S_j = s_1 + \ldots + s_j</tex>, <tex>j = 1 \ldots m</tex> {{---}} сумма первых <tex>j</tex> станков
  
<tex> S_j = s_1 + \ldots + s_j</tex>
+
<tex> p_i </tex> {{---}} время выполнения <tex>i</tex>-ой работы, <tex> s_j</tex> {{---}} скорость работы <tex> j </tex>-oй машины.
 
 
<tex>i = 1 \ldots n</tex>,  <tex>j = 1 \ldots m</tex>, <tex> p_i </tex> {{---}} время выполнения <tex>i</tex>-ой работы, <tex> s_j</tex> {{---}} скорость работы <tex> j </tex>-oй машины.
 
  
 
Необходимое условие для выполнения всех работ в интервале <tex>[0 \ldots T]</tex>:
 
Необходимое условие для выполнения всех работ в интервале <tex>[0 \ldots T]</tex>:
  
<tex> P_n = p_1 + \ldots + p_n \leqslant s_1T + \ldots + s_mT = S_mT</tex> или <tex>P_n/S_m \leqslant T</tex>
+
<tex> P_n = p_1 + \ldots + p_n \leqslant s_1T + \ldots + s_mT = S_mT</tex> или <tex>\dfrac{P_n}{S_m} \leqslant T</tex>
  
Кроме того, должно выполняться условие <tex>P_j/S_j \leqslant T</tex> для всех <tex> j = 1 \ldots m - 1 </tex>, так как это нижняя оценка времени выполнения работ <tex> J_1 \ldots J_j</tex>. Исходя из этого получаем нижнюю границу <tex>C_{max}</tex> :
+
Кроме того, должно выполняться условие <tex>\dfrac{P_j}{S_j} \leqslant T</tex> для всех <tex> j = 1 \ldots m - 1 </tex>, так как это нижняя оценка времени выполнения работ <tex> J_1 \ldots J_j</tex>. Исходя из этого получаем нижнюю границу <tex>C_{max}</tex> :
  
 
<tex>C_{max} = \max
 
<tex>C_{max} = \max
Строка 31: Строка 30:
  
 
===Псевдокод===
 
===Псевдокод===
Функция <tex>\mathrm{level}</tex>:
+
Функция <tex>\mathrm{level}</tex> принимает на вход два массива — массив с объемами работ и массив скоростей обработки станков, и возвращает вектор четвёрок, где первый элемент является номером станка, второй — номером работы, а два оставшихся время начала и окончания обработки этой работы на этом станке.
   '''function''' level():
+
   '''function''' level(p : '''int[]''', s : '''int[]''', n : '''int''', m : '''int''') : '''vector<int, int, int, int>'''
      '''int''' <tex>t = 0 </tex>
+
      '''vector<int, int, int, int>''' ans
      '''while''' <tex>\exists p(t) > 0</tex>
+
      '''int''' t = 0
          assign(t)
+
      '''int''' k = n
          '''int''' <tex>t_1 = \min (s \mid s > t </tex> '''and''' <tex>p(s) = 0)</tex>
+
      sort(p)  <font color=green> // сортируем время обработки работ по убыванию </font>
          '''int''' <tex>t_2 = \min (s \mid s > t</tex> '''and''' <tex>\exists i</tex>, <tex>j : p_i(t) > p_j(t)</tex> '''and''' <tex>p_i(s) = p_j(s))</tex>
+
      sort(s)  <font color=green> // сортируем станки по убыванию скоростей </font>
          <tex>t = \min(t_1</tex>, <tex>t_2)</tex> <font color=green> // поиск следующего момента времени, в который нужно будет перераспределить машины/работы </font>
+
      '''while''' k > 0
      Построение расписания
+
        '''int[]''' to = assign(p, k, m)  <font color=green> // получаем распределение работ по станкам </font>
 
+
        Найдем минимальное dt1 отличное от нуля такое, что (p[i] - s[to[i]] * dt1) = 0
Функция <tex>\mathrm{assign}(t)</tex>:
+
        Найдем минимальное dt2 отличное от нуля такое, что p[i] > p[j] и (p[i] - s[to[i]] * dt2 = p[j] - s[to[j]] * dt2)
  '''function''' assign (<tex>t</tex> : '''int'''):
+
        '''int''' dt = min(dt1, dt2)
      <tex>J = \{i \mid p_i(t) > 0\}</tex> <font color=green> // множество работ с положительным level </font>
+
        '''for''' j = 0 '''to''' n - 1
      <tex>M = \{M_1 \ldots M_m\}</tex>  <font color=green> // множество всех станков </font>
+
            '''if''' p[j] > 0
      '''while''' <tex>J \ne \varnothing</tex> '''or''' <tex>M \ne \varnothing</tex>
+
              '''if''' to[j] <tex> \neq </tex> -1 <font color=green> // рассматриваем работы которые обрабатываются в данном распределении</font>
        '''int''' <tex>maxLevel = \max(p_i(t) \mid i \in J)</tex>  <font color=green> // максимальное значение level из J </font>
+
                  ans.push(to[j], j, t, t + dt)
        '''int''' <tex>count = J.getCount(maxLevel)</tex> <font color=green> // количество работ с level = maxLevel </font>
+
                  p[j] -= s[to[i]] * dt
        '''int''' <tex>r = \min(|M|</tex>, <tex>count)</tex>
+
                  '''if''' p[j] == 0
        <tex>I \leftarrow \{r</tex> работ из <tex>J \mid p(t) = maxLevel\}</tex>
+
                    k--
        <tex>M' \leftarrow \{r</tex> самых быстрых машин из <tex>M\}</tex>
+
        t += dt <font color=green> // поиск следующего момента времени, в который нужно будет перераспределить машины/работы </font>
        Распределяем работы
+
      '''return''' ans
        <tex>J \leftarrow J \setminus I</tex>
 
        <tex>M \leftarrow M \setminus M'</tex>
 
  
 +
Функция <tex>\mathrm{assign}</tex> принимает на вход массив с объемами работ и возвращает массив с распределением работ.
 +
  '''function''' assign (p : '''int[]''', n : '''int''', m : '''int''') : '''int[]'''
 +
      '''int[]''' to  <font color=green> // j работа обрабатывается на to[j] станке </font>
 +
      fill(to, -1)
 +
      '''int''' i = 0
 +
      '''while''' i < m '''and''' i < n
 +
        Находим первый j такой что p[j] максимальный
 +
        m[j] = i++
 +
      '''return''' to
  
 
===Асимптотика===
 
===Асимптотика===
Строка 74: Строка 80:
 
Будем считать, что в начале алгоритма все работы упорядочены, как было сказано ранее: <tex> p_1(0) \geqslant p_2(0) \geqslant \ldots \geqslant p_n(0) </tex>. Это утверждение не меняется на протяжении всего выполнения алгоритма, для любого момента времени. Получаем: <tex> p_1(t) \geqslant p_2(t) \geqslant \ldots \geqslant p_n(t) </tex>. Докажем что алгоритм составляет расписание в соответствии с этим свойством. Чтобы доказать этот факт, будем считать что в любой момент времени <tex>T</tex> нет простоев машин, когда есть хотя бы одна невыполненная работа. Получаем:
 
Будем считать, что в начале алгоритма все работы упорядочены, как было сказано ранее: <tex> p_1(0) \geqslant p_2(0) \geqslant \ldots \geqslant p_n(0) </tex>. Это утверждение не меняется на протяжении всего выполнения алгоритма, для любого момента времени. Получаем: <tex> p_1(t) \geqslant p_2(t) \geqslant \ldots \geqslant p_n(t) </tex>. Докажем что алгоритм составляет расписание в соответствии с этим свойством. Чтобы доказать этот факт, будем считать что в любой момент времени <tex>T</tex> нет простоев машин, когда есть хотя бы одна невыполненная работа. Получаем:
  
<tex>  T(s_1 + \ldots + s_m) = p_1 + p_2 + \ldots + p_n </tex> или <tex> T = {P_n \over S_m} </tex>
+
<tex>  T(s_1 + \ldots + s_m) = p_1 + p_2 + \ldots + p_n </tex> или <tex> T = \dfrac{P_n}{S_m} </tex>
  
 
Таким образом необходимая оценка достигается нашим алгоритмом.
 
Таким образом необходимая оценка достигается нашим алгоритмом.

Версия 01:39, 8 июня 2016

[math]Q \mid pmtn \mid C_{max}[/math]

Задача:
Дано [math]m[/math] станков с разной скоростью выполнения работ, работающих параллельно, и [math]n[/math] работ. Работа может быть прервана в любой момент и продолжена позже на любой машине. Необходимо минимизировать время выполнения всех работ.


Алгоритм построения расписания

Описание алгоритма

Перед выполнением алгоритма, упорядочим все работы по убыванию их времени выполнения:[math] p_1 \geqslant p_2 \geqslant p_3 \ldots \geqslant p_n[/math], а все машины в порядке убывания скоростей: [math] s_1 \geqslant s_2 \geqslant s_3 \ldots \geqslant s_m[/math]. Введем следующие обозначения:

  • [math]P_i = p_1 + \ldots + p_i[/math], [math]i = 1 \ldots n[/math] — сумма первых [math]i[/math] работ
  • [math]S_j = s_1 + \ldots + s_j[/math], [math]j = 1 \ldots m[/math] — сумма первых [math]j[/math] станков

[math] p_i [/math] — время выполнения [math]i[/math]-ой работы, [math] s_j[/math] — скорость работы [math] j [/math]-oй машины.

Необходимое условие для выполнения всех работ в интервале [math][0 \ldots T][/math]:

[math] P_n = p_1 + \ldots + p_n \leqslant s_1T + \ldots + s_mT = S_mT[/math] или [math]\dfrac{P_n}{S_m} \leqslant T[/math]

Кроме того, должно выполняться условие [math]\dfrac{P_j}{S_j} \leqslant T[/math] для всех [math] j = 1 \ldots m - 1 [/math], так как это нижняя оценка времени выполнения работ [math] J_1 \ldots J_j[/math]. Исходя из этого получаем нижнюю границу [math]C_{max}[/math] :

[math]C_{max} = \max \left \{\begin{array}{ll} \dfrac{P_n}{S_m} \\ \max\limits_{j=1 \ldots m-1} \dfrac{P_j}{S_j} \end{array} \right. [/math]

Перейдем к описанию алгоритма. Будем назвать [math]\mathrm{level}[/math]-ом работы [math] p_i(t) [/math] невыполненную часть работы [math] p_i [/math] в момент времени [math] t [/math]

Далее построим расписание, которое достигает нашей оценки [math]C_{max}[/math], с помощью [math]\mathrm{level}[/math]-алгоритма.

Псевдокод

Функция [math]\mathrm{level}[/math] принимает на вход два массива — массив с объемами работ и массив скоростей обработки станков, и возвращает вектор четвёрок, где первый элемент является номером станка, второй — номером работы, а два оставшихся время начала и окончания обработки этой работы на этом станке.

  function level(p : int[], s : int[], n : int, m : int) : vector<int, int, int, int>
     vector<int, int, int, int> ans
     int t = 0
     int k = n
     sort(p)   // сортируем время обработки работ по убыванию 
     sort(s)   // сортируем станки по убыванию скоростей 
     while k > 0
        int[] to = assign(p, k, m)   // получаем распределение работ по станкам 
        Найдем минимальное dt1 отличное от нуля такое, что (p[i] - s[to[i]] * dt1) = 0
        Найдем минимальное dt2 отличное от нуля такое, что p[i] > p[j] и (p[i] - s[to[i]] * dt2 = p[j] - s[to[j]] * dt2)
        int dt = min(dt1, dt2)
        for j = 0 to n - 1
           if p[j] > 0
              if to[j] [math] \neq [/math] -1   // рассматриваем работы которые обрабатываются в данном распределении
                 ans.push(to[j], j, t, t + dt)
                 p[j] -= s[to[i]] * dt
                 if p[j] == 0
                    k--
        t += dt   // поиск следующего момента времени, в который нужно будет перераспределить машины/работы 
     return ans

Функция [math]\mathrm{assign}[/math] принимает на вход массив с объемами работ и возвращает массив с распределением работ.

  function assign (p : int[], n : int, m : int) : int[]
     int[] to   // j работа обрабатывается на to[j] станке 
     fill(to, -1)
     int i = 0
     while i < m and i < n
        Находим первый j такой что p[j] максимальный
        m[j] = i++
     return to

Асимптотика

[math]\mathrm{level}[/math]-алгоритм вызывает функцию [math]\mathrm{assign}(t) [/math] в самом худшем случае [math]O(n)[/math] раз. Функция [math]\mathrm{assign}(t) [/math] выполняется за [math]O(nm)[/math]. Итоговое время работы [math]O(n^2m)[/math].


Доказательство корректности алгоритма

Теорема:
Расписание, построенное данным алгоритмом, является корректным и оптимальным.
Доказательство:
[math]\triangleright[/math]

Так как нижняя граница [math]C_{max}[/math]:

[math]C_{max} = \max \left \{\begin{array}{ll} \dfrac{P_n}{S_m} \\ \max\limits_{j=1 \ldots m-1} \dfrac{P_j}{S_j} \end{array} \right. [/math]

то достаточно показать, что составленное расписание достигает этой оценки.

Будем считать, что в начале алгоритма все работы упорядочены, как было сказано ранее: [math] p_1(0) \geqslant p_2(0) \geqslant \ldots \geqslant p_n(0) [/math]. Это утверждение не меняется на протяжении всего выполнения алгоритма, для любого момента времени. Получаем: [math] p_1(t) \geqslant p_2(t) \geqslant \ldots \geqslant p_n(t) [/math]. Докажем что алгоритм составляет расписание в соответствии с этим свойством. Чтобы доказать этот факт, будем считать что в любой момент времени [math]T[/math] нет простоев машин, когда есть хотя бы одна невыполненная работа. Получаем:

[math] T(s_1 + \ldots + s_m) = p_1 + p_2 + \ldots + p_n [/math] или [math] T = \dfrac{P_n}{S_m} [/math]

Таким образом необходимая оценка достигается нашим алгоритмом.

Допустим хотя бы одна машина простаивает, в момент когда есть невыполненные работы, получим следующее неравенство для времен окончания работ (обозначим далее как [math] f_i [/math]) на станках [math]M_1 \ldots M_m[/math], пронумерованных по убыванию скоростей:

[math] f_1 \geqslant f_2 \geqslant \ldots \geqslant f_m [/math]

Докажем написанное выше неравенство:

Предположим, что [math] f_i \lt f_{i+1} [/math] для некоторого [math] 1 \leqslant i \leqslant m-1 [/math]. Тогда [math]\mathrm{level}[/math] последней работы, выполнявшейся на станке [math] M_i [/math] в момент времени [math] f_i - \varepsilon [/math] (где [math] \varepsilon \gt 0[/math] достаточно мал) меньше, чем [math]\mathrm{level}[/math] последней работы на станке [math] M_{i+1} [/math]. Пришли к противоречию, так как при распределении, работы с наибольшим [math]\mathrm{level}[/math] выставлялись на самые быстрые станки.

Пусть [math] T [/math] = [math] f_1 = f_2 = f_3 = \ldots = f_j \gt f_{j+1}[/math] ,где [math] j \lt m [/math]. Чтобы работы завершились в момент времени [math] T [/math], необходимо начать их в момент времени 0, поскольку если это не выполняется, то у нас найдется работа [math] J_i [/math] , которая начинается позже [math] t = 0 [/math] и заканчивается в [math] T [/math]. Это означает, что в момент времени [math] 0 [/math] начинаются как минимум [math] m [/math] работ. Пусть первые [math] m [/math] работ стартовали вместе на всех машинах. Мы получаем [math] p_1(0) \geqslant p_2(0) \geqslant \ldots \geqslant p_m(0) \geqslant p_i(0) [/math], из чего следует, что [math] p_1(T - \varepsilon) \geqslant \ldots \geqslant p_m(T - \varepsilon) \geqslant p_i(T - \varepsilon) \gt 0 [/math] для любого [math] \varepsilon [/math], удовлетворяющего условию [math] 0 \leqslant \varepsilon \lt T - t [/math]. Таким образом, до момента времени [math] T [/math] нет простаивающих машин. Пришли к противоречию. Получаем [math] T = {P_j \over S_j} [/math].
[math]\triangleleft[/math]

Пример

Картинка к примеру

Пусть у нас есть [math]6[/math] работ и [math]3[/math] станка. Покажем работу алгоритма для данного случая.

В начальный момент времени начинаем обрабатывать работы с наибольшим временем выполнения [math]J_1[/math], [math]J_2[/math] и [math]J_3[/math] на станках [math]M_1[/math], [math]M_2[/math] и [math]M_3[/math] соответственно. В момент времени [math]T_1[/math] [math]\mathrm{level}[/math] [math]1[/math]-ой работы и [math]2[/math]-ой работы совпадает. С этого момента начинаем обрабатывать работы [math]J_1[/math] и [math]J_2[/math] синхронно на станках: [math]M_1[/math] и [math]M_2[/math]. В момент времени [math]T_2[/math] работа [math]J_3[/math] опускается до уровня работы [math]J_4[/math].Работы [math]J_3[/math] и [math]J_4[/math] выполняем одновременно на одном станке [math]M_3[/math]. В момент времени [math]T_3[/math] начинаем выполнять первые четыре работы на всех станках одновременно, далее просто добавятся работы [math]J_5[/math] и [math]J_6[/math], и все работы закончатся одновременно.

См. также

Источники информации

  • Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 124 — 129 стр. — ISBN 978-3-540-69515-8