Алгоритм Касаи и др. — различия между версиями
Строка 109: | Строка 109: | ||
===Псевдокод=== | ===Псевдокод=== | ||
Алгоритм принимает на вход строку с добавленным специальным символом <tex>\$</tex> и суффиксный массив этой строки, и возвращает массив <tex>lcp</tex>, такой что <tex>lcp[i]</tex> содержит длину наибольшего общего префикса строк <tex>i</tex> и <tex>i-1</tex> в суффиксном массиве. | Алгоритм принимает на вход строку с добавленным специальным символом <tex>\$</tex> и суффиксный массив этой строки, и возвращает массив <tex>lcp</tex>, такой что <tex>lcp[i]</tex> содержит длину наибольшего общего префикса строк <tex>i</tex> и <tex>i-1</tex> в суффиксном массиве. | ||
− | '''int[]''' buildLCP(str: '''string''', suf: '''int[]''') | + | '''int[]''' buildLCP(str: '''string''', suf: '''int[]''') |
− | |||
'''int''' len <tex>=</tex> str.length | '''int''' len <tex>=</tex> str.length | ||
'''int[len]''' lcp | '''int[len]''' lcp | ||
− | '''int[len]''' pos | + | '''int[len]''' pos <font color=green> // pos[] {{---}} массив, обратный массиву suf </font> |
'''for''' i = 0 '''to''' len - 1 | '''for''' i = 0 '''to''' len - 1 | ||
pos[suf[i]] <tex>=</tex> i | pos[suf[i]] <tex>=</tex> i |
Версия 13:28, 8 июня 2016
Алгоритм Касаи, Аримуры, Арикавы, Ли, Парка (англ. algorithm of Kasai, Arimura, Arikawa, Lee, Park) — алгоритм, позволяющий за линейное время вычислить длину наибольших общих префиксов (англ. longest common prefix, LCP) для соседних циклических сдвигов строки, отсортированных в лексикографическом порядке.
Содержание
Обозначения
Задана строка
. Тогда — суффикс строки , начинающийся в -ом символе. Пусть задан суффиксный массив . Для вычисления будем использовать вспомогательный массив . Массив определен как обратный к массиву . Он может быть получен немедленно, если задан массив . Если , то .Пусть
— массив , тогда — длина наибольшего общего префикса и строк в суффиксном массиве ( и соответственно).Некоторые свойства
Факт №1
между двумя суффиксами — это минимум всех пар соседних суффиксов между ними в суффиксном массиве . То есть . Отсюда следует, что пары соседних суффиксов в массиве больше или равно пары суффиксов, окружающих их.
Утверждение: |
Факт №2
Рассмотрим пару суффиксов, соседних в массиве
. Тогда если их значение больше , то можно удалить первый символ этих суффиксов и их лексикографический порядок относительно друг друга сохранится. То есть строка будет идти следом за строкой и останется лексикографически больше нее.Утверждение: |
Если , тогда |
Факт №3
В этом же случае, значение
Утверждение: |
Если , тогда |
Пример
Рассмотрим строку
. Её суффиксный массив:Распишем суффиксный массив по столбикам для удобного нахождения
:Строим массив
:Например
— это длина наибольшего общего префикса суффиксов иВспомогательные утверждения
Теперь рассмотрим следующую задачу: рассчитать
между суффиксом и его соседним суффиксом в массиве , при условии, что значение между и его соседним суффиксом известны. Для удобства записи пусть и . Так же пусть и . Проще говоря, мы хотим посчитать , когда заданоЛемма: |
Если , тогда |
Доказательство: |
Так как | , имеем из факта №2. Так как , имеем из факта №1
Теорема: |
Если , то |
Доказательство: |
(из леммы) Значит, (из факта №3). |
Алгоритм
Представим алгоритм
который вычисляет массив , зная суффиксный массив. Исходя из выше написанной теоремы, нам не нужно сравнивать все символы, когда мы вычисляем между суффиксом и его соседним суффиксом в массиве . Чтобы вычислить всех соседних суффиксов в массиве эффективно, будем рассматривать суффиксы по порядку начиная с и заканчивая .Псевдокод
Алгоритм принимает на вход строку с добавленным специальным символом
и суффиксный массив этой строки, и возвращает массив , такой что содержит длину наибольшего общего префикса строк и в суффиксном массиве.int[] buildLCP(str: string, suf: int[]) int lenstr.length int[len] lcp int[len] pos // pos[] — массив, обратный массиву suf for i = 0 to len - 1 pos[suf[i]] i int k 0 for i = 0 to len - 1 if k > 0 k-- if pos[i] == len - 1 lcp[len - 1] -1 k 0 else int j suf[pos[i] + 1] while max(i + k, j + k) < len and str[i + k] == str[j + k] k++ lcp[pos[i]] k return lcp
Асимптотика
Таким образом, начиная проверять
для текущего суффикса не с первого символа, а с указанного, можно за линейное время построить . Покажем, что построение таким образом действительно требует времени. Действительно, на каждой итерации текущее значение может быть не более чем на единицу меньше предыдущего. Таким образом, значения в сумме могут увеличиться не более, чем на (с точностью до константы). Следовательно, алгоритм построит за .