Алгоритм Касаи и др. — различия между версиями
Строка 1: | Строка 1: | ||
− | '''Алгоритм Касаи, Аримуры, Арикавы, Ли, Парка''' (англ. ''Kasai, Arimura, Arikawa, Lee, Park algorithm'') {{---}} алгоритм, позволяющий за линейное время вычислить | + | '''Алгоритм Касаи, Аримуры, Арикавы, Ли, Парка''' (англ. ''Kasai, Arimura, Arikawa, Lee, Park algorithm'') {{---}} алгоритм, позволяющий за линейное время вычислить длину наибольших общих префиксов (англ. ''longest common prefix'', ''LCP'') для всех соседних циклических сдвигов строки, отсортированных в лексикографическом порядке. |
− | длину наибольших общих префиксов (англ. ''longest common prefix'', ''LCP'') для соседних циклических сдвигов строки, отсортированных в лексикографическом | ||
− | порядке. | ||
==Обозначения== | ==Обозначения== | ||
− | + | Введём следующие обозначения: | |
− | * | + | * <tex>S</tex> {{---}} данная строка. |
− | * [[Суффиксный массив | | + | * <tex>S_{i}</tex> {{---}} суффикс строки <tex>S</tex>, начинающийся в <tex>i</tex>-ом символе. |
− | * | + | * <tex>Suf</tex> {{---}} [[Суффиксный массив | суффиксный массив]]. |
− | + | * <tex>Suf^{-1}</tex> {{---}} массив, обратный суффиксному, который может быть получен немедленно, если задан массив <tex>Suf</tex>. Если <tex>Suf[k] = i</tex>, то <tex>Suf^{-1}[i] = k</tex>. | |
− | + | * <tex>LCP(S_{Suf[x]}, S_{Suf[z]})</tex> {{---}} длина наибольшего общего префикса строк <tex>S_{Suf[x]}</tex> и <tex>S_{Suf[z]}</tex>. | |
+ | * <tex>lcp[i]</tex> {{---}} длина наибольшего общего префикса соседних строк, то есть <tex>lcp[i] = LCP(S_{Suf[i-1]}, S_{Suf[i]})</tex>. | ||
==Некоторые свойства LCP== | ==Некоторые свойства LCP== | ||
Строка 15: | Строка 14: | ||
|id = fact1 | |id = fact1 | ||
|about= №1 | |about= №1 | ||
− | |statement=<tex>LCP(S_{Suf[y - 1]}, S_{Suf[y]}) \geqslant LCP(S_{Suf[x]},S_{Suf[z]}), x < y \leqslant z</tex> | + | |statement= |
− | + | <tex>LCP(S_{Suf[y - 1]}, S_{Suf[y]}) \geqslant LCP(S_{Suf[x]},S_{Suf[z]}), x < y \leqslant z</tex> | |
+ | |proof= | ||
<tex>LCP</tex> между двумя суффиксами {{---}} минимум <tex>LCP</tex> всех пар соседних суффиксов между ними в суффиксном массиве <tex>Suf</tex>. То есть <tex>LCP(S_{Suf[x]}, S_{Suf[z]}) = \min\limits_{x < y \leqslant z}LCP(S_{Suf[y - 1]},S_{Suf[y]})</tex>. | <tex>LCP</tex> между двумя суффиксами {{---}} минимум <tex>LCP</tex> всех пар соседних суффиксов между ними в суффиксном массиве <tex>Suf</tex>. То есть <tex>LCP(S_{Suf[x]}, S_{Suf[z]}) = \min\limits_{x < y \leqslant z}LCP(S_{Suf[y - 1]},S_{Suf[y]})</tex>. | ||
Отсюда следует, что <tex>LCP</tex> пары соседних суффиксов в массиве <tex>Suf</tex> больше или равно <tex>LCP</tex> пары суффиксов, окружающих их. | Отсюда следует, что <tex>LCP</tex> пары соседних суффиксов в массиве <tex>Suf</tex> больше или равно <tex>LCP</tex> пары суффиксов, окружающих их. | ||
− | + | }} | |
− | + | Также заметим, что <tex>LCP(S_{Suf[x]}, S_{Suf[z]}) = \min\limits_{i = x + 1 \ldots z}lcp[i]</tex>. | |
{{Утверждение | {{Утверждение | ||
|id = fact2 | |id = fact2 | ||
Строка 26: | Строка 26: | ||
|statement= | |statement= | ||
Если <tex>LCP(S_{Suf[x-1]} , S_{Suf[x]}) > 1</tex>, тогда <tex>Suf^{-1}[Suf[x - 1] + 1] < Suf^{-1}[Suf[x] + 1]</tex> | Если <tex>LCP(S_{Suf[x-1]} , S_{Suf[x]}) > 1</tex>, тогда <tex>Suf^{-1}[Suf[x - 1] + 1] < Suf^{-1}[Suf[x] + 1]</tex> | ||
+ | |proof= | ||
+ | Рассмотрим пару суффиксов, соседних в массиве <tex>Suf</tex>. Тогда если их значение <tex>LCP</tex> больше <tex>1</tex>, то можно удалить первый символ этих суффиксов и их лексикографический порядок относительно друг друга сохранится. То есть строка <tex>S_{Suf[x] + 1}</tex> будет идти следом за строкой <tex>S_{Suf[x-1] + 1}</tex> и останется лексикографически больше нее. | ||
}} | }} | ||
− | |||
− | |||
{{Утверждение | {{Утверждение | ||
Строка 34: | Строка 34: | ||
|about= №3 | |about= №3 | ||
|statement=Если <tex>LCP(S_{Suf[x-1]} , S_{Suf[x]} ) > 1</tex>, тогда <tex>LCP(S_{Suf[x-1]+1} , S_{Suf[x]+1}) = LCP(S_{Suf[x-1]} , S_{Suf[x]} ) - 1</tex> | |statement=Если <tex>LCP(S_{Suf[x-1]} , S_{Suf[x]} ) > 1</tex>, тогда <tex>LCP(S_{Suf[x-1]+1} , S_{Suf[x]+1}) = LCP(S_{Suf[x-1]} , S_{Suf[x]} ) - 1</tex> | ||
+ | |proof= | ||
+ | В этом же случае, значение <tex>LCP</tex> между <tex>S_{Suf[x-1]+1}</tex> и <tex>S_{Suf[x]+1}</tex> на один меньше значения <tex>LCP</tex> между <tex>S_{Suf[x-1]}</tex> и <tex>S_{Suf[x]}</tex>. | ||
}} | }} | ||
− | |||
− | |||
===Пример=== | ===Пример=== | ||
Строка 94: | Строка 94: | ||
===Вспомогательные утверждения=== | ===Вспомогательные утверждения=== | ||
− | Теперь рассмотрим следующую задачу: рассчитать <tex>LCP</tex> между суффиксом <tex>S_{i}</tex> и его соседним суффиксом в массиве <tex>Suf</tex>, при условии, что значение <tex>LCP</tex> между <tex>S_{i-1}</tex> и его соседним суффиксом известны. Для удобства записи пусть <tex>p=Suf^{-1}[i - 1]</tex> и <tex>q = Suf^{-1}[i]</tex>. Так же пусть <tex>j - 1 = Suf[p-1]</tex> и <tex>k = Suf[q - 1]</tex>. Проще говоря, мы хотим посчитать <tex> | + | Теперь рассмотрим следующую задачу: рассчитать <tex>LCP</tex> между суффиксом <tex>S_{i}</tex> и его соседним суффиксом в массиве <tex>Suf</tex>, при условии, что значение <tex>LCP</tex> между <tex>S_{i-1}</tex> и его соседним суффиксом известны. Для удобства записи пусть <tex>p=Suf^{-1}[i - 1]</tex> и <tex>q = Suf^{-1}[i]</tex>. Так же пусть <tex>j - 1 = Suf[p-1]</tex> и <tex>k = Suf[q - 1]</tex>. Проще говоря, мы хотим посчитать <tex>lcp[q]</tex>, когда задано <tex>lcp[p]</tex>. |
− | {{Лемма|statement= | + | {{Лемма |
+ | |id = lemma | ||
+ | |statement= | ||
Если <tex>LCP(S_{j-1}, S_{i-1}) > 1</tex>, тогда <tex>LCP(S_k,S_i) \geqslant LCP(S_j,S_i)</tex>. | Если <tex>LCP(S_{j-1}, S_{i-1}) > 1</tex>, тогда <tex>LCP(S_k,S_i) \geqslant LCP(S_j,S_i)</tex>. | ||
|proof= | |proof= | ||
Строка 105: | Строка 107: | ||
Если <tex>lcp[p] = LCP(S_{j-1}, S_{i-1}) > 1</tex>, то <tex>lcp[q] = LCP(S_{k}, S_{i}) \geqslant lcp[p] - 1</tex> | Если <tex>lcp[p] = LCP(S_{j-1}, S_{i-1}) > 1</tex>, то <tex>lcp[q] = LCP(S_{k}, S_{i}) \geqslant lcp[p] - 1</tex> | ||
|proof= | |proof= | ||
− | <tex>LCP(S_{k}, S_{i}) \geqslant LCP(S_{j} , S_{i})</tex> (по лемме). | + | <tex>LCP(S_{k}, S_{i}) \geqslant LCP(S_{j} , S_{i})</tex> (по [[#lemma | лемме]]). |
<tex>LCP(S_{j} , S_{i}) = LCP(S_{j-1}, S_{i-1}) - 1</tex> (по [[#fact3 | утверждению №3]]). | <tex>LCP(S_{j} , S_{i}) = LCP(S_{j-1}, S_{i-1}) - 1</tex> (по [[#fact3 | утверждению №3]]). |
Версия 16:46, 8 июня 2016
Алгоритм Касаи, Аримуры, Арикавы, Ли, Парка (англ. Kasai, Arimura, Arikawa, Lee, Park algorithm) — алгоритм, позволяющий за линейное время вычислить длину наибольших общих префиксов (англ. longest common prefix, LCP) для всех соседних циклических сдвигов строки, отсортированных в лексикографическом порядке.
Содержание
Обозначения
Введём следующие обозначения:
- — данная строка.
- — суффикс строки , начинающийся в -ом символе.
- суффиксный массив. —
- — массив, обратный суффиксному, который может быть получен немедленно, если задан массив . Если , то .
- — длина наибольшего общего префикса строк и .
- — длина наибольшего общего префикса соседних строк, то есть .
Некоторые свойства LCP
Утверждение (№1): |
Отсюда следует, что между двумя суффиксами — минимум всех пар соседних суффиксов между ними в суффиксном массиве . То есть . пары соседних суффиксов в массиве больше или равно пары суффиксов, окружающих их. |
Также заметим, что
.Утверждение (№2): |
Если , тогда |
Рассмотрим пару суффиксов, соседних в массиве | . Тогда если их значение больше , то можно удалить первый символ этих суффиксов и их лексикографический порядок относительно друг друга сохранится. То есть строка будет идти следом за строкой и останется лексикографически больше нее.
Утверждение (№3): |
Если , тогда |
В этом же случае, значение | между и на один меньше значения между и .
Пример
Рассмотрим строку
. Её суффиксный массив:Распишем суффиксный массив по столбикам для удобного нахождения
:Строим массив
:Например
— длина наибольшего общего префикса суффиксов и .Вспомогательные утверждения
Теперь рассмотрим следующую задачу: рассчитать
между суффиксом и его соседним суффиксом в массиве , при условии, что значение между и его соседним суффиксом известны. Для удобства записи пусть и . Так же пусть и . Проще говоря, мы хотим посчитать , когда задано .Лемма: |
Если , тогда . |
Доказательство: |
Так как | , имеем из факта №2. Так как , имеем из факта №1
Теорема: |
Если , то |
Доказательство: |
лемме). (по Значит, (по . |
Алгоритм
Представим алгоритм
который вычисляет массив , зная суффиксный массив. Исходя из выше написанной теоремы, нам не нужно сравнивать все символы, когда мы вычисляем между суффиксом и его соседним суффиксом в массиве . Чтобы вычислить всех соседних суффиксов в массиве эффективно, будем рассматривать суффиксы по порядку начиная с и заканчивая .Псевдокод
Алгоритм принимает на вход строку длиной
, с добавленным специальным символом и суффиксный массив этой строки, и возвращает массив .int[] buildLCP(str: string, suf: int[]) int nstr.length int[len] lcp int[len] pos // pos[] — массив, обратный массиву suf for i = 0 to n - 1 pos[suf[i]] i int k 0 for i = 0 to n - 1 if k > 0 k-- if pos[i] == n - 1 lcp[n - 1] -1 k 0 else int j suf[pos[i] + 1] while max(i + k, j + k) < n and str[i + k] == str[j + k] k++ lcp[pos[i]] k return lcp
Асимптотика
Таким образом, начиная проверять
для текущего суффикса не с первого символа, а с указанного, можно за линейное время построить . Покажем, что построение таким образом действительно требует времени. Действительно, на каждой итерации текущее значение может быть не более чем на единицу меньше предыдущего. Таким образом, значения в сумме могут увеличиться не более, чем на (с точностью до константы). Следовательно, алгоритм построит за .